scispace - formally typeset
Search or ask a question
Author

Mark Hallett

Bio: Mark Hallett is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Transcranial magnetic stimulation & Motor cortex. The author has an hindex of 186, co-authored 1170 publications receiving 123741 citations. Previous affiliations of Mark Hallett include Government of the United States of America & Armed Forces Institute of Pathology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings, including the need for a new, more accurate, and more widely used definition of BR in the context of movement disorders.
Abstract: Background and purpose Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. Methods We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. Results Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. Conclusion In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.

22 citations

Journal ArticleDOI
TL;DR: The laryngeal dystonia was recognized as a multifactorial, phenotypically heterogeneous form of isolated dystonias by the National Institutes of Health (NIH) in 2005 as discussed by the authors.
Abstract: Objective. To delineate research priorities for improving clinical management of laryngeal dystonia, the NIH convened a multi-disciplinary panel of experts for a one-day workshop to examine the current progress in understanding its etiopathophysiology and clinical care. Methods. The participants reviewed the current terminology of disorder and discussed advances in understanding its pathophysiology since a similar workshop was held in 2005. Clinical and research gaps were identified, and recommendations for future directions were delineated. Results. The panel unanimously agreed to adopt the term “laryngeal dystonia” instead of “spasmodic dysphonia” to reflect the current progress in characterizations of this disorder. Laryngeal dystonia was recognized as a multifactorial, phenotypically heterogeneous form of isolated dystonia. Its etiology remains unknown, whereas the pathophysiology likely involves large-scale functional and structural brain network disorganization. Current challenges include the lack of clinically validated diagnostic markers and outcome measures and the paucity of therapies that address the disorder pathophysiology. Conclusion. Research priorities should be guided by challenges in clinical management of laryngeal dystonia. Identification of disorder-specific biomarkers would allow the development of novel diagnostic tools and unified measures of treatment outcome. Elucidation of the critical nodes within neural networks that cause or modulate symptoms would allow the development of targeted therapies that address the underlying pathophysiology. Given the rarity of laryngeal dystonia, future rapid research progress may be facilitated by multi-center, national and international collaborations.

22 citations

Journal ArticleDOI
TL;DR: Results suggest that corticospinal inhibition tested by the SP duration is reduced during the movement of another body part, presumably in order to help maintain muscle force by compensating interference-related alteration in motor cortical activation.
Abstract: When attempting to perform two tasks simultaneously, the human motor as well as the cognitive system shows interference Such interference often causes altered activation of the cortical area representing each task compared to the single task condition We investigated changes in corticospinal inhibition during dual action by transcranial magnetic stimulation (TMS) Single-pulse TMS was applied to the left motor cortex, triggered by right leg movement (tibialis anterior muscle) while the right abductor digiti minimi (ADM) muscle was moderately activated (10-20% of the maximal voluntary contraction) The background electromyography (EMG) activity of ADM was measured before and during the leg movement The silent period (SP) and amplitude of motor evoked potential (MEP) following magnetic stimulation in active ADM were compared for the conditions with and without leg movement The mean area of the rectified EMG activity of ADM did not alter, while the SP was significantly shortened during leg movement compared to that without leg movement MEP amplitude was comparable between the two conditions These results suggest that corticospinal inhibition tested by the SP duration is reduced during the movement of another body part, presumably in order to help maintain muscle force by compensating interference-related alteration in motor cortical activation

22 citations

Journal ArticleDOI
TL;DR: The results indicate that the brain can be preparing to make voluntary movements while participants are thinking about something else, and real-time predictions of movements in advance of their occurrence with a low false-positive rate are made.
Abstract: A central feature of voluntary movement is the sense of volition, but when this sense arises in the course of movement formulation and execution is not clear. Many studies have explored how the brain might be actively preparing movement before the sense of volition; however, because the timing of the sense of volition has depended on subjective and retrospective judgments, these findings are still regarded with a degree of scepticism. EEG events such as beta event-related desynchronization and movement-related cortical potentials are associated with the brain's programming of movement. Using an optimized EEG signal derived from multiple variables, we were able to make real-time predictions of movements in advance of their occurrence with a low false-positive rate. We asked participants what they were thinking at the time of prediction: Sometimes they were thinking about movement, and other times they were not. Our results indicate that the brain can be preparing to make voluntary movements while participants are thinking about something else.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

Journal ArticleDOI
TL;DR: The basal ganglia serve primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex.
Abstract: Information about the basal ganglia has accumulated at a prodigious pace over the past decade, necessitating major revisions in our concepts of the structural and functional organization of these nuclei. From earlier data it had appeared that the basal ganglia served primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex (Allen & Tsukahara 1974, Evarts & Thach 1969, Kemp & Powell 1971). In particular, the basal

8,111 citations

Journal ArticleDOI
TL;DR: FieldTrip is an open source software package that is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data.
Abstract: This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

7,963 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations