scispace - formally typeset
Search or ask a question
Author

Mark Hallett

Bio: Mark Hallett is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Transcranial magnetic stimulation & Motor cortex. The author has an hindex of 186, co-authored 1170 publications receiving 123741 citations. Previous affiliations of Mark Hallett include Government of the United States of America & Armed Forces Institute of Pathology.


Papers
More filters
Journal ArticleDOI
TL;DR: Whether motor evoked potentials as well as silent periods could be produced in hand and shoulder muscles by transcranial magnetic stimulation (TMS) of the ipsilateral cerebral hemisphere and, if so, whether their cortical representations could be mapped with respect to those of contralateral muscles was sought.
Abstract: We sought to determine whether motor evoked potentials (MEPs) as well as silent periods could be produced in hand and shoulder muscles by transcranial magnetic stimulation (TMS) of the ipsilateral cerebral hemisphere and, if so, whether their cortical representations could be mapped with respect to those of contralateral muscles. In six normal subjects, we delivered ten stimuli each to a grid of sites 1 cm apart on the scalp. The EMG was recorded and averaged from the contralateral first dorsal interosseous (FDI) and risorius (facial) muscles at rest and the ipsilateral FDI muscle, which was voluntarily contracted. In four of these subjects and an additional subject, we used the same mapping technique and recorded from the deltoid muscle on the right and left sides and the contralateral FDI during activation of the ipsilateral deltoid. In all subjects, the cortical representation of the contralateral risorius was anterolateral to that of the FDI. The contralateral deltoid could be activated in only three subjects. In them, its representation was slightly medial to that of the FDI. All subjects had at least one scalp site where TMS produced MEPs in the ipsilateral FDI. Two subjects had rich ipsilateral hand representations with multiple ipsilateral MEP sites. Both had ipsilateral MEP sites near the representation of the contralateral FDI, but the largest ipsilateral MEPs occurred with TMS at more lateral sites, which were near the representation of the contralateral risorius. In these subjects, the ipsilateral deltoid was preferentially activated at sites medial and posterior to those activating the contralateral muscle. Ipsilateral TMS also produced silent periods in the FDI in all subjects. These silent periods were much more frequent than the ipsilateral MEPs and tended to occur with TMS near the representation of the contralateral FDI. The excitatory cortical representation of the ipsilateral arm muscles is accessible to TMS in normal subjects and is different from that of the homologous contralateral muscles. The hand may have two ipsilateral representations, one of which produces silent periods and the other MEPs at the same stimulus intensity.

192 citations

Journal ArticleDOI
01 Oct 2003-Brain
TL;DR: Findings of altered sensory processing in idiopathic focal but not generalized DYT1 dySTONia suggest both a primary pathophysiological role for the phenomenon in focal dystonia and divergent pathophysiology processes in the two conditions.
Abstract: Sensory processing is impaired in focal hand dystonia (FHD), with most previous studies having evaluated only the symptomatic limb. The purpose of this study was to establish whether the sensory system is affected in other types of dystonias and whether the contralateral hand is also involved in FHD. We used a spatial acuity measure (Johnson-Van Boven-Phillips domes) to evaluate sensory spatial discrimination in both hands of patients with different forms of dystonias including primary generalized DYT1 dystonia (associated with a unique deletion in the DYT1 gene) (n = 13), FHD (n = 15), benign essential blepharospasm (n = 9), cervical dystonia (n = 10) and in age-matched controls. Clinical evaluation included the Fahn dystonia scale for the focal dystonia groups and the Marsden-Burke-Fahn scale for the generalized dystonia group. Spatial discrimination was normal in patients with DYT1 dystonia, despite all of these patients having hand dystonia. However, spatial discrimination thresholds were significantly increased in both hands in the focal dystonia groups (thresholds were similar for each group) and did not correlate significantly with either severity or duration of dystonic symptoms. Thresholds were significantly increased in the dominant hand compared with the non-dominant hand only within the FHD group. Our observations demonstrate involvement of both the dominant and non-dominant somatosensory cortices, and suggest that abnormal sensory processing is a fundamental disturbance in patients with focal dystonia. These findings of altered sensory processing in idiopathic focal but not generalized DYT1 dystonia suggest both a primary pathophysiological role for the phenomenon in focal dystonia and divergent pathophysiological processes in the two conditions.

192 citations

Journal ArticleDOI
01 Aug 1992-Brain
TL;DR: It is concluded that magnetic stimulation shortens RT by inducing an earlier initiation of this excitability increase in the motor cortex, similar to what was found with suprathreshold stimulation to the ipsilateral motor cortex.
Abstract: In a simple reaction time (RT) paradigm, magnetic stimulation of different intensities was delivered over different scalp positions and at variable delays before (negative) or after (positive) the go-signal. Magnetic stimulation shortened RT to different go-signals (auditory, visual and somatosensory stimuli) by approximately 30 ms when delivered over the motor cortex contralateral to the responding arm at intensities below motor threshold. This effect was maximal at a delay of approximately + 10 ms. A similar effect was found with suprathreshold stimulation to the ipsilateral motor cortex. Magnetic stimulation over other scalp areas did not affect RT regardless of the delay. No differences were found between the effects on elbow flexion and thumb abduction. The shortening of RT was not associated with changes in the timing development of premovement excitability increase in the motor cortex. We conclude that magnetic stimulation shortens RT by inducing an earlier initiation of this excitability increase

191 citations

Journal ArticleDOI
TL;DR: The findings highlight a biopsychosocial approach toward the pathophysiology of psychogenic movement disorder, although the association with psychological issues is much less prominent than expected compared with the nonepileptic seizure population.
Abstract: Psychogenic movement disorder is defined as abnormal movements unrelated to a medical cause and presumed related to underlying psychological factors. Although psychological factors are of both clinical and pathophysiological relevance, very few studies to date have systematically assessed their role in psychogenic movement disorder. We sought to assess the role of previous life stress using validated quantitative measures in patients with psychogenic movement disorder compared with age- and sex-matched healthy volunteers as well as a convenience sample of patients with focal hand dystonia. Sixty-four patients with psychogenic movement disorder (72% female; mean age, 45.2 years [standard deviation, 15.2 years]), 38 healthy volunteers (74% female; mean age, 49 years [standard deviation, 13.7 years]), and 39 patients with focal hand dystonia (37% female; mean age, 48.7 years [standard deviation, 11.7 years]) were evaluated using a standardized psychological interview as well as validated quantitative scales to assess trauma and previous stressors, depression, anxiety, and personality traits. Patients with psychogenic movement disorder reported higher rates of childhood trauma, specifically greater emotional abuse and physical neglect, greater fear associated with traumatic events, and a greater number of traumatic episodes compared with healthy volunteers and patients with focal hand dystonia controlled for depressive symptoms and sex (Bonferroni corrected P < .005). There were no differences in categorical psychiatric diagnoses or scores on childhood physical or sexual abuse subscales, personality traits, or the dissociative experience scale. Our findings highlight a biopsychosocial approach toward the pathophysiology of psychogenic movement disorder, although the association with psychological issues is much less prominent than expected compared with the nonepileptic seizure population. A careful psychological assessment is indicated to optimize therapeutic modalities.

191 citations

Journal ArticleDOI
TL;DR: Transcranial magnetic stimulation with a focal coil was used to map the cortical representation of a hand muscle in four healthy subjects, demonstrating the accuracy of transcranial Magnetic Stimulation for locating the primary motor area.

191 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations

Journal ArticleDOI
TL;DR: The basal ganglia serve primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex.
Abstract: Information about the basal ganglia has accumulated at a prodigious pace over the past decade, necessitating major revisions in our concepts of the structural and functional organization of these nuclei. From earlier data it had appeared that the basal ganglia served primarily to integrate diverse inputs from the entire cerebral cortex and to "funnel" these influences, via the ventrolateral thalamus, to the motor cortex (Allen & Tsukahara 1974, Evarts & Thach 1969, Kemp & Powell 1971). In particular, the basal

8,111 citations

Journal ArticleDOI
TL;DR: FieldTrip is an open source software package that is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data.
Abstract: This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.

7,963 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations