scispace - formally typeset
Search or ask a question
Author

Mark J. Robbins

Bio: Mark J. Robbins is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Microbial metabolism & Soil horizon. The author has an hindex of 5, co-authored 5 publications receiving 87 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.
Abstract: Previous studies have suggested that protozoa prey on Fe(III)- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI) reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and s-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus s-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus s-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

31 citations

Journal ArticleDOI
TL;DR: Together the data indicate that microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Colorado River near Rifle, CO is correlated to the geochemical conditions in the aquifer, likely control microbial host cell abundance which in turn controls viral abundance.
Abstract: Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Colorado River near Rifle, CO. Virus abundance ranged from 8.0 × 104 to 1.0 × 106 mL-1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 104 to 6.1 × 105 mL-1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.

27 citations

Journal ArticleDOI
TL;DR: Following acetate amendment at the site, elevated concentrations of arsenic in the groundwater were observed, and 4 additional thioarsenic species demonstrate a strong correlation between arsenic release and sulfide concentrations in groundwater, and their formation may explain the elevated total arsenic concentrations.
Abstract: Stimulating microbial growth through the use of acetate injection wells at the former uranium mill site in Rifle, Colorado, USA, has been shown to decrease dissolved uranium (VI) concentrations through bacterial reduction to immobile uranium (IV) Bioreduction also changed the redox chemistry of site groundwater, altering the mobility of several other redox-sensitive elements present in the subsurface, including iron, sulfur, and arsenic Following acetate amendment at the site, elevated concentrations of arsenic in the groundwater were observed Ion chromatography-inductively coupled plasma–mass spectrometry was used to determine the aqueous arsenic speciation Upgradient samples, unexposed to acetate, showed low levels of arsenic (≈1 μM), with greater than 90% as arsenate (As[V]) and a small amount of arsenite (As[III]) Downgradient acetate-stimulated water samples had much higher levels of arsenic (up to 8 μM), and 4 additional thioarsenic species were present under sulfate-reducing conditions These thioarsenic species demonstrate a strong correlation between arsenic release and sulfide concentrations in groundwater, and their formation may explain the elevated total arsenic concentrations An alternative remediation approach, enhanced flushing of uranium, was accomplished by addition of bicarbonate and did not result in highly elevated arsenic concentrations Environ Toxicol Chem 2013;32:1216–1223 © 2013 SETAC

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compared measured and calculated CO2 fluxes at the Rifle floodplain along the Colorado River and measured CO2 production rates of floodplain sediments to determine the relative importance of deeper vadose zone respiration.
Abstract: Although CO2 fluxes from soils are often assumed to originate within shallow soil horizons (<1-m depth), relatively little is known about respiration rates at greater depths. We compared measured and calculated CO2 fluxes at the Rifle floodplain along the Colorado River and measured CO2 production rates of floodplain sediments to determine the relative importance of deeper vadose zone respiration. Calculations based on measured CO2 gradients and estimated effective diffusion coefficients yielded fluxes that are generally consistent with measurements obtained at the soil surface (326 g C m−2 yr−1). Carbon dioxide production from the 2.0- to 3.5-m depth interval was calculated to contribute 17% of the total floodplain respiration, with rates that were larger than some parts of the shallower vadose zone and underlying aquifer. Microbial respiration rates determined from laboratory incubation tests of the sediments support this conclusion. The deeper unsaturated zone typically maintains intermediate water and air saturations, lacks extreme temperatures and salinities, and is annually resupplied with organic carbon from snowmelt-driven recharge and by water table decline. This combination of favorable conditions supports deeper unsaturated zone microbial respiration throughout the year.

24 citations

Journal ArticleDOI
TL;DR: The results indicate that the redox-buffering capacity of reduced sediments can prevent U mobilization, but could be overcome as delivery rate or oxidant concentration increases, mobilizing U.
Abstract: Reduced zones in the subsurface represent biogeochemically active hotspots enriched in buried organic matter and reduced metals. Within a shallow alluvial aquifer located near Rifle, CO, reduced zones control the fate and transport of uranium (U). Though an influx of dissolved oxygen (DO) would be expected to mobilize U, we report U immobilization. Groundwater U concentrations decreased following delivery of DO (21.6 mg O2/well/h). After 23 days of DO delivery, injection of oxygenated groundwater was paused and resulted in the rebound of groundwater U concentrations to preinjection levels. When DO delivery resumed (day 51), groundwater U concentrations again decreased. The injection was halted on day 82 again and resulted in a rebound of groundwater U concentrations. DO delivery rate was increased to 54 mg O2/well/h (day 95) whereby groundwater U concentrations increased. Planktonic cell abundance remained stable throughout the experiment, but virus-to-microbial cell ratio increased 1.8–3.4-fold with init...

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The overall biomass composition of the biosphere is assembled, establishing a census of the ≈550 gigatons of carbon (Gt C) of biomass distributed among all of the kingdoms of life and shows that terrestrial biomass is about two orders of magnitude higher than marine biomass and estimate a total of ≈6 Gt C of marine biota, doubling the previous estimated quantity.
Abstract: A census of the biomass on Earth is key for understanding the structure and dynamics of the biosphere. However, a global, quantitative view of how the biomass of different taxa compare with one another is still lacking. Here, we assemble the overall biomass composition of the biosphere, establishing a census of the ≈550 gigatons of carbon (Gt C) of biomass distributed among all of the kingdoms of life. We find that the kingdoms of life concentrate at different locations on the planet; plants (≈450 Gt C, the dominant kingdom) are primarily terrestrial, whereas animals (≈2 Gt C) are mainly marine, and bacteria (≈70 Gt C) and archaea (≈7 Gt C) are predominantly located in deep subsurface environments. We show that terrestrial biomass is about two orders of magnitude higher than marine biomass and estimate a total of ≈6 Gt C of marine biota, doubling the previous estimated quantity. Our analysis reveals that the global marine biomass pyramid contains more consumers than producers, thus increasing the scope of previous observations on inverse food pyramids. Finally, we highlight that the mass of humans is an order of magnitude higher than that of all wild mammals combined and report the historical impact of humanity on the global biomass of prominent taxa, including mammals, fish, and plants.

1,714 citations

Journal ArticleDOI
TL;DR: This study sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River and reconstructed the first complete genomes for Archaea using cultivation-independent methods, which dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum.

463 citations

Journal ArticleDOI
TL;DR: The results suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp.
Abstract: The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili.IMPORTANCEMethanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.

229 citations

Journal ArticleDOI
TL;DR: Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry as mentioned in this paper, and it is important to quantify speciation in addition to total amount of arsenic.
Abstract: Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources. Chemical speciation is fundamental to understanding mobility and toxicity. Speciation affects arsenic solubility and solid-phase associations, and thus the mobility, of arsenic in natural waters. It is also critical to designing treatment strategies, understanding human exposure routes, and even developing medical applications (e.g., as a treatment for acute promyelocytic leukemia; Antman 2001). As single- and multi-celled organisms are exposed to various forms of arsenic, they often alter its speciation to either utilize the arsenic for energy or to mitigate the detrimental effects of intracellular arsenic (detoxification). Some organisms can accumulate arsenic in cell material, which can be a concern if it accumulates in a human food product such as rice or seafood, but could be a potential remediation solution in hyper-accumulating plants (Ma et al. 2001). It is important to quantify speciation in addition to total amount of arsenic because …

125 citations