scispace - formally typeset
Search or ask a question
Author

Mark J. Schnitzer

Bio: Mark J. Schnitzer is an academic researcher from Stanford University. The author has contributed to research in topics: Population & Microscopy. The author has an hindex of 68, co-authored 150 publications receiving 18462 citations. Previous affiliations of Mark J. Schnitzer include Harvard University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
08 Jul 1999-Nature
TL;DR: The kinesin cycle contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis, and it is likely that at leastOne other load- dependent rate exists, affecting turnover number.
Abstract: Kinesin is a two-headed, ATP-driven motor protein that moves processively along microtubules in discrete steps of 8 nm, probably by advancing each of its heads alternately in sequence. Molecular details of how the chemical energy stored in ATP is coupled to mechanical displacement remain obscure. To shed light on this question, a force clamp was constructed, based on a feedback-driven optical trap capable of maintaining constant loads on single kinesin motors. The instrument provides unprecedented resolution of molecular motion and permits mechanochemical studies under controlled external loads. Analysis of records of kinesin motion under variable ATP concentrations and loads revealed several new features. First, kinesin stepping appears to be tightly coupled to ATP hydrolysis over a wide range of forces, with a single hydrolysis per 8-nm mechanical advance. Second, the kinesin stall force depends on the ATP concentration. Third, increased loads reduce the maximum velocity as expected, but also raise the apparent Michaelis-Menten constant. The kinesin cycle therefore contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis. It is likely that at least one other load-dependent rate exists, affecting turnover number. Together, these findings will necessitate revisions to our understanding of how kinesin motors function.

993 citations

Journal ArticleDOI
TL;DR: Using Ca2+ imaging in freely behaving mice that repeatedly explored a familiar environment, thousands of CA1 pyramidal cells' place fields over weeks were tracked to preserve an accurate spatial representation across weeks.
Abstract: Using Ca(2+) imaging in freely behaving mice that repeatedly explored a familiar environment, we tracked thousands of CA1 pyramidal cells' place fields over weeks. Place coding was dynamic, as each day the ensemble representation of this environment involved a unique subset of cells. However, cells in the ∼15-25% overlap between any two of these subsets retained the same place fields, which sufficed to preserve an accurate spatial representation across weeks.

876 citations

Journal ArticleDOI
30 Oct 1998-Science
TL;DR: Modeling the data suggests that high loads may halt RNAP by promoting a structural change which moves all or part of the enzyme backwards through a comparatively large distance, corresponding to 5 to 10 base pairs, contrasts with previous models that assumed force acts directly upon a single-base translocation step.
Abstract: RNA polymerase (RNAP) moves along DNA while carrying out transcription, acting as a molecular motor. Transcriptional velocities for single molecules of Escherichia coli RNAP were measured as progressively larger forces were applied by a feedback-controlled optical trap. The shapes of RNAP force-velocity curves are distinct from those of the motor enzymes myosin or kinesin, and indicate that biochemical steps limiting transcription rates at low loads do not generate movement. Modeling the data suggests that high loads may halt RNAP by promoting a structural change which moves all or part of the enzyme backwards through a comparatively large distance, corresponding to 5 to 10 base pairs. This contrasts with previous models that assumed force acts directly upon a single-base translocation step.

874 citations

Journal ArticleDOI
TL;DR: A miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice and allows concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones.
Abstract: The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.

868 citations

Journal ArticleDOI
TL;DR: Key recent advances that unite optical and genetic approaches are explored, focusing on promising techniques that either allow novel studies of neural dynamics and behavior or provide fresh perspectives on classic model systems.
Abstract: Emerging technologies from optics, genetics, and bioengineering are being combined for studies of intact neural circuits. The rapid progression of such interdisciplinary "optogenetic" approaches has expanded capabilities for optical imaging and genetic targeting of specific cell types. Here we explore key recent advances that unite optical and genetic approaches, focusing on promising techniques that either allow novel studies of neural dynamics and behavior or provide fresh perspectives on classic model systems.

758 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 1964
TL;DR: In this paper, the notion of a collective unconscious was introduced as a theory of remembering in social psychology, and a study of remembering as a study in Social Psychology was carried out.
Abstract: Part I. Experimental Studies: 2. Experiment in psychology 3. Experiments on perceiving III Experiments on imaging 4-8. Experiments on remembering: (a) The method of description (b) The method of repeated reproduction (c) The method of picture writing (d) The method of serial reproduction (e) The method of serial reproduction picture material 9. Perceiving, recognizing, remembering 10. A theory of remembering 11. Images and their functions 12. Meaning Part II. Remembering as a Study in Social Psychology: 13. Social psychology 14. Social psychology and the matter of recall 15. Social psychology and the manner of recall 16. Conventionalism 17. The notion of a collective unconscious 18. The basis of social recall 19. A summary and some conclusions.

5,690 citations

Journal ArticleDOI
TL;DR: Fundamental concepts of nonlinear microscopy are reviewed and conditions relevant for achieving large imaging depths in intact tissue are discussed.
Abstract: With few exceptions biological tissues strongly scatter light, making high-resolution deep imaging impossible for traditional⎯including confocal⎯fluorescence microscopy. Nonlinear optical microscopy, in particular two photon–excited fluorescence microscopy, has overcome this limitation, providing large depth penetration mainly because even multiply scattered signal photons can be assigned to their origin as the result of localized nonlinear signal generation. Two-photon microscopy thus allows cellular imaging several hundred microns deep in various organs of living animals. Here we review fundamental concepts of nonlinear microscopy and discuss conditions relevant for achieving large imaging depths in intact tissue.

3,781 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations