scispace - formally typeset
Search or ask a question
Author

Márk Jelasity

Bio: Márk Jelasity is an academic researcher from University of Szeged. The author has contributed to research in topics: Overlay network & Scalability. The author has an hindex of 34, co-authored 119 publications receiving 6331 citations. Previous affiliations of Márk Jelasity include Leiden University & University of Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a gossip-based protocol for computing aggregate values over network components in a fully decentralized fashion and demonstrates the efficiency and robustness of the protocol both theoretically and experimentally under a variety of scenarios including node and communication failures.
Abstract: As computer networks increase in size, become more heterogeneous and span greater geographic distances, applications must be designed to cope with the very large scale, poor reliability, and often, with the extreme dynamism of the underlying network. Aggregation is a key functional building block for such applications: it refers to a set of functions that provide components of a distributed system access to global information including network size, average load, average uptime, location and description of hotspots, and so on. Local access to global information is often very useful, if not indispensable for building applications that are robust and adaptive. For example, in an industrial control application, some aggregate value reaching a threshold may trigger the execution of certain actions; a distributed storage system will want to know the total available free space; load-balancing protocols may benefit from knowing the target average load so as to minimize the load they transfer. We propose a gossip-based protocol for computing aggregate values over network components in a fully decentralized fashion. The class of aggregate functions we can compute is very broad and includes many useful special cases such as counting, averages, sums, products, and extremal values. The protocol is suitable for extremely large and highly dynamic systems due to its proactive structure---all nodes receive the aggregate value continuously, thus being able to track any changes in the system. The protocol is also extremely lightweight, making it suitable for many distributed applications including peer-to-peer and grid computing systems. We demonstrate the efficiency and robustness of our gossip-based protocol both theoretically and experimentally under a variety of scenarios including node and communication failures.

782 citations

Proceedings ArticleDOI
09 Oct 2009
TL;DR: The key features of peer-to-peer (P2P) systems are scalability and dynamism, so simulation is crucial in P2P research.
Abstract: The key features of peer-to-peer (P2P) systems are scalability and dynamism. The evaluation of a P2P protocol in realistic environments is very expensive and difficult to reproduce, so simulation is crucial in P2P research.

617 citations

Journal ArticleDOI
TL;DR: This paper presents a generic framework to implement a peer-sampling service in a decentralized manner by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself, which generalizes existing approaches and makes it easy to discover new ones.
Abstract: Gossip-based communication protocols are appealing in large-scale distributed applications such as information dissemination, aggregation, and overlay topology management. This paper factors out a fundamental mechanism at the heart of all these protocols: the peer-sampling service. In short, this service provides every node with peers to gossip with. We promote this service to the level of a first-class abstraction of a large-scale distributed system, similar to a name service being a first-class abstraction of a local-area system. We present a generic framework to implement a peer-sampling service in a decentralized manner by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself. Our framework generalizes existing approaches and makes it easy to discover new ones. We use this framework to empirically explore and compare several implementations of the peer-sampling service. Through extensive simulation experiments we show that---although all protocols provide a good quality uniform random stream of peers to each node locally---traditional theoretical assumptions about the randomness of the unstructured overlays as a whole do not hold in any of the instances. We also show that different design decisions result in severe differences from the point of view of two crucial aspects: load balancing and fault tolerance. Our simulations are validated by means of a wide-area implementation.

540 citations

Proceedings ArticleDOI
18 Oct 2004
TL;DR: This paper presents a generic framework to implement reliable and efficient peer sampling services, which generalizes existing approaches and makes it easy to introduce new ones, and shows that all of them lead to differentpeer sampling services none of which is uniformly random.
Abstract: In recent years, the gossip-based communication model in large-scale distributed systems has become a general paradigm with important applications which include information dissemination, aggregation, overlay topology management and synchronization. At the heart of all of these protocols lies a fundamental distributed abstraction: the peer sampling service. In short, the aim of this service is to provide every node with peers to exchange information with. Analytical studies reveal a high reliability and efficiency of gossip-based protocols, under the (often implicit) assumption that the peers to send gossip messages to are selected uniformly at random from the set of all nodes. In practice -- instead of requiring all nodes to know all the peer nodes so that a random sample could be drawn -- a scalable and efficient way to implement the peer sampling service is by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself.This paper presents a generic framework to implement reliable and efficient peer sampling services. The framework generalizes existing approaches and makes it easy to introduce new ones. We use this framework to explore and compare several implementations of our abstraction. Through extensive experimental analysis, we show that all of them lead to different peer sampling services none of which is uniformly random. This clearly renders traditional theoretical approaches invalid, when the underlying peer sampling service is based on a gossip-based scheme. Our observations also help explain important differences between design choices of peer sampling algorithms, and how these impact the reliability of the corresponding service.

339 citations

Proceedings Article
01 Jan 2005
TL;DR: In this article, a conceptual framework that captures several basic biological processes in the form of a family of design patterns is proposed, such as plain diffusion, replication, chemotaxis, and stigmergy.
Abstract: Recent developments in information technology have brought about important changes in distributed computing. New environments such as massively large-scale, wide-area computer networks and mobile ad hoc networks have emerged. Common characteristics of these environments include extreme dynamicity, unreliability, and large scale. Traditional approaches to designing distributed applications in these environments based on central control, small scale, or strong reliability assumptions are not suitable for exploiting their enormous potential. Based on the observation that living organisms can effectively organize large numbers of unreliable and dynamically-changing components (cells, molecules, individuals, etc.) into robust and adaptive structures, it has long been a research challenge to characterize the key ideas and mechanisms that make biological systems work and to apply them to distributed systems engineering. In this article we propose a conceptual framework that captures several basic biological processes in the form of a family of design patterns. Examples include plain diffusion, replication, chemotaxis, and stigmergy. We show through examples how to implement important functions for distributed computing based on these patterns. Using a common evaluation methodology, we show that our bio-inspired solutions have performance comparable to traditional, state-of-the-art solutions while they inherit desirable properties of biological systems including adaptivity and robustness.

297 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A survey of technologies, applications and research challenges for Internetof-Things is presented, in which digital and physical entities can be linked by means of appropriate information and communication technologies to enable a whole new class of applications and services.
Abstract: The term ‘‘Internet-of-Things’’ is used as an umbrella keyword for covering various aspects related to the extension of the Internet and the Web into the physical realm, by means of the widespread deployment of spatially distributed devices with embedded identification, sensing and/or actuation capabilities. Internet-of-Things envisions a future in which digital and physical entities can be linked, by means of appropriate information and communication technologies, to enable a whole new class of applications and services. In this article, we present a survey of technologies, applications and research challenges for Internetof-Things.

3,172 citations

Book
22 Jun 2009
TL;DR: This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling.
Abstract: A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

2,735 citations

Book ChapterDOI
01 Jan 1977
TL;DR: In the Hamadryas baboon, males are substantially larger than females, and a troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young.
Abstract: In the Hamadryas baboon, males are substantially larger than females. A troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young. The male prevents any of ‘his’ females from moving too far from him. Kummer (1971) performed the following experiment. Two males, A and B, previously unknown to each other, were placed in a large enclosure. Male A was free to move about the enclosure, but male B was shut in a small cage, from which he could observe A but not interfere. A female, unknown to both males, was then placed in the enclosure. Within 20 minutes male A had persuaded the female to accept his ownership. Male B was then released into the open enclosure. Instead of challenging male A , B avoided any contact, accepting A’s ownership.

2,364 citations