scispace - formally typeset
Search or ask a question
Author

Mark Johnson

Bio: Mark Johnson is an academic researcher from Oracle Corporation. The author has contributed to research in topics: Parsing & Language model. The author has an hindex of 62, co-authored 323 publications receiving 20142 citations. Previous affiliations of Mark Johnson include Brown University & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a bottom-up and top-down attention mechanism was proposed to enable attention to be calculated at the level of objects and other salient image regions, which achieved state-of-the-art results on the MSCOCO test server.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,904 citations

Posted Content
TL;DR: A combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions is proposed, demonstrating the broad applicability of this approach to VQA.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,248 citations

Proceedings ArticleDOI
25 Jun 2005
TL;DR: This paper describes a simple yet novel method for constructing sets of 50- best parses based on a coarse-to-fine generative parser that generates 50-best lists that are of substantially higher quality than previously obtainable.
Abstract: Discriminative reranking is one method for constructing high-performance statistical parsers (Collins, 2000). A discriminative reranker requires a source of candidate parses for each sentence. This paper describes a simple yet novel method for constructing sets of 50-best parses based on a coarse-to-fine generative parser (Charniak, 2000). This method generates 50-best lists that are of substantially higher quality than previously obtainable. We used these parses as the input to a MaxEnt reranker (Johnson et al., 1999; Riezler et al., 2002) that selects the best parse from the set of parses for each sentence, obtaining an f-score of 91.0% on sentences of length 100 or less.

1,156 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This paper proposed a new automated caption evaluation metric defined over scene graphs coined SPICE, which captures human judgments over model-generated captions better than other automatic metrics (e.g., system-level correlation of 0.88 with human judgments on the MS COCO dataset, versus 0.43 for CIDEr and 0.53 for METEOR).
Abstract: There is considerable interest in the task of automatically generating image captions. However, evaluation is challenging. Existing automatic evaluation metrics are primarily sensitive to n-gram overlap, which is neither necessary nor sufficient for the task of simulating human judgment. We hypothesize that semantic propositional content is an important component of human caption evaluation, and propose a new automated caption evaluation metric defined over scene graphs coined SPICE. Extensive evaluations across a range of models and datasets indicate that SPICE captures human judgments over model-generated captions better than other automatic metrics (e.g., system-level correlation of 0.88 with human judgments on the MS COCO dataset, versus 0.43 for CIDEr and 0.53 for METEOR). Furthermore, SPICE can answer questions such as which caption-generator best understands colors? and can caption-generators count?

1,053 citations

Posted Content
TL;DR: It is hypothesized that semantic propositional content is an important component of human caption evaluation, and a new automated caption evaluation metric defined over scene graphs coined SPICE is proposed, which can answer questions such as which caption-generator best understands colors?
Abstract: There is considerable interest in the task of automatically generating image captions. However, evaluation is challenging. Existing automatic evaluation metrics are primarily sensitive to n-gram overlap, which is neither necessary nor sufficient for the task of simulating human judgment. We hypothesize that semantic propositional content is an important component of human caption evaluation, and propose a new automated caption evaluation metric defined over scene graphs coined SPICE. Extensive evaluations across a range of models and datasets indicate that SPICE captures human judgments over model-generated captions better than other automatic metrics (e.g., system-level correlation of 0.88 with human judgments on the MS COCO dataset, versus 0.43 for CIDEr and 0.53 for METEOR). Furthermore, SPICE can answer questions such as `which caption-generator best understands colors?' and `can caption-generators count?'

922 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Posted Content
TL;DR: A new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely is proposed, which generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.
Abstract: The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

7,019 citations

Journal Article
TL;DR: A unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including part-of-speech tagging, chunking, named entity recognition, and semantic role labeling is proposed.
Abstract: We propose a unified neural network architecture and learning algorithm that can be applied to various natural language processing tasks including part-of-speech tagging, chunking, named entity recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made input features carefully optimized for each task, our system learns internal representations on the basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for building a freely available tagging system with good performance and minimal computational requirements.

6,734 citations

Proceedings ArticleDOI
05 Jul 2008
TL;DR: This work describes a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense using a language model.
Abstract: We describe a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense (grammatically and semantically) using a language model. The entire network is trained jointly on all these tasks using weight-sharing, an instance of multitask learning. All the tasks use labeled data except the language model which is learnt from unlabeled text and represents a novel form of semi-supervised learning for the shared tasks. We show how both multitask learning and semi-supervised learning improve the generalization of the shared tasks, resulting in state-of-the-art-performance.

5,759 citations