scispace - formally typeset
Search or ask a question
Author

Mark Mascal

Bio: Mark Mascal is an academic researcher from University of California, Davis. The author has contributed to research in topics: Furfural & Levulinic acid. The author has an hindex of 38, co-authored 153 publications receiving 6289 citations. Previous affiliations of Mark Mascal include University of Illinois at Urbana–Champaign & University of Strasbourg.


Papers
More filters
Journal ArticleDOI
TL;DR: The objectives of this Review are to discuss current thinking on the nature of this interaction, to survey key experimental work in which anions-π bonding is demonstrated, and to provide insights into the directional nature of anion-π contact in X-ray crystal structures.
Abstract: Supramolecular chemistry is a field of scientific exploration that probes the relationship between molecular structure and function. It is the chemistry of the noncovalent bond, which forms the basis of highly specific recognition, transport, and regulation events that actuate biological processes. The classic design principles of supramolecular chemistry include strong, directional interactions like hydrogen bonding, halogen bonding, and cation-π complexation, as well as less directional forces like ion pairing, π-π, solvophobic, and van der Waals potentials. In recent years, the anion-π interaction (an attractive force between an electron-deficient aromatic π system and an anion) has been recognized as a hitherto unexplored noncovalent bond, the nature of which has been interpreted through both experimental and theoretical investigations. The design of selective anion receptors and channels based on this interaction represent important advances in the field of supramolecular chemistry. The objectives of this Review are 1) to discuss current thinking on the nature of this interaction, 2) to survey key experimental work in which anion-π bonding is demonstrated, and 3) to provide insights into the directional nature of anion-π contact in X-ray crystal structures.

565 citations

Journal ArticleDOI
TL;DR: The basis for unprecedented noncovalent bonding between anions and the aryl centroid of electron-deficient aromatic rings has been demonstrated and this novel mode of bonding suggests the development of new cyclophane-type receptors for the recognition of anions.
Abstract: The basis for unprecedented noncovalent bonding between anions and the aryl centroid of electron-deficient aromatic rings has been demonstrated by an ab initio study of the interaction between 1,3,5-triazine and the fluoride, chloride, and azide ion at the MP2 level of theory. Minima are also located corresponding to C[bond]H...X(-) hydrogen bonding, reactive complexes for nucleophilic attack on the triazine ring, and pi-stacking interactions (with azide). Trifluoro-1,3,5-triazine also participates in aryl centroid complexation and forms nucleophilic reactive complexes with anions. This novel mode of bonding suggests the development of new cyclophane-type receptors for the recognition of anions.

560 citations

Journal ArticleDOI
TL;DR: In this paper, the solvolysis of 5-(chloromethyl)furfural (CMF) is used to extract 5-(hydroxymethyl)fur furs from sugar, cellulose, or lignocellulosic feedstocks, and the process described here presents an efficient entry into the value-added manifold of biomass derived products of relevance to the organic materials and fuel industries.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the basic physical concepts and the microstructural features of equilibrium and non-equilibrium nanostructured materials (NsM) and make an attempt to summarize their properties.

2,629 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations