scispace - formally typeset
Search or ask a question
Author

Mark Moll

Bio: Mark Moll is an academic researcher from Rice University. The author has contributed to research in topics: Motion planning & Robot. The author has an hindex of 26, co-authored 99 publications receiving 4810 citations. Previous affiliations of Mark Moll include Carnegie Mellon University & Information Sciences Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The open motion planning library is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms, and it can be conveniently interfaced with other software components.
Abstract: The open motion planning library (OMPL) is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms. The library is designed in a way that it allows the user to easily solve a variety of complex motion planning problems with minimal input. OMPL facilitates the addition of new motion planning algorithms, and it can be conveniently interfaced with other software components. A simple graphical user interface (GUI) built on top of the library, a number of tutorials, demos, and programming assignments are designed to teach students about sampling-based motion planning. The library is also available for use through Robot Operating System (ROS).

1,472 citations

Journal ArticleDOI
TL;DR: Several of the key directions for the future of modular self-reconfigurable robotic systems, including the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology are shown.
Abstract: The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing field

903 citations

Journal Article
TL;DR: Several of the key directions for the future of modular self-reconfigurable robotic systems, including the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology are shown.
Abstract: The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing field

414 citations

Journal ArticleDOI
TL;DR: The proposed method to obtain a few collective coordinates by using nonlinear dimensionality reduction can efficiently find a low-dimensional representation of a complex process such as protein folding.
Abstract: The definition of reaction coordinates for the characterization of a protein-folding reaction has long been a controversial issue, even for the “simple” case in which one single free-energy barrier separates the folded and unfolded ensemble. We propose a general approach to this problem to obtain a few collective coordinates by using nonlinear dimensionality reduction. We validate the usefulness of this method by characterizing the folding landscape associated with a coarse-grained protein model of src homology 3 as sampled by molecular dynamics simulations. The folding free-energy landscape projected on the few relevant coordinates emerging from the dimensionality reduction can correctly identify the transition-state ensemble of the reaction. The first embedding dimension efficiently captures the evolution of the folding process along the main folding route. These results clearly show that the proposed method can efficiently find a low-dimensional representation of a complex process such as protein folding.

328 citations

Proceedings ArticleDOI
01 Oct 2006
TL;DR: This paper presents a novel self-reconfigurable robotic system called SuperBot, which addresses the challenges of building and controlling deployable self- reconfigurable robots.
Abstract: Self-reconfigurable robots are modular robots that can autonomously change their shape and size to meet specific operational demands. Recently, there has been a great interest in using self-reconfigurable robots in applications such as reconnaissance, rescue missions, and space applications. Designing and controlling self-reconfigurable robots is a difficult task. Hence, the research has primarily been focused on developing systems that can function in a controlled environment. This paper presents a novel self-reconfigurable robotic system called SuperBot, which addresses the challenges of building and controlling deployable self-reconfigurable robots. Six prototype modules have been built and preliminary experimental results demonstrate that SuperBot is a flexible and powerful system that can be used in challenging real-world applications.

322 citations


Cited by
More filters
Book
20 May 2005
TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Abstract: A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

1,811 citations

Journal Article
TL;DR: This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-basedLearning, case-based teaching, discovery learning, and just-in-time teaching, and defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness.
Abstract: Traditional engineering instruction is deductive, beginning with theories and progressing to the applications of those theories Alternative teaching approaches are more inductive Topics are introduced by presenting specific observations, case studies or problems, and theories are taught or the students are helped to discover them only after the need to know them has been established This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching The paper defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness of the methods While the strength of the evidence varies from one method to another, inductive methods are consistently found to be at least equal to, and in general more effective than, traditional deductive methods for achieving a broad range of learning outcomes

1,673 citations

Journal ArticleDOI
TL;DR: The open motion planning library is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms, and it can be conveniently interfaced with other software components.
Abstract: The open motion planning library (OMPL) is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms. The library is designed in a way that it allows the user to easily solve a variety of complex motion planning problems with minimal input. OMPL facilitates the addition of new motion planning algorithms, and it can be conveniently interfaced with other software components. A simple graphical user interface (GUI) built on top of the library, a number of tutorials, demos, and programming assignments are designed to teach students about sampling-based motion planning. The library is also available for use through Robot Operating System (ROS).

1,472 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the capabilities of soft robots, describe examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.
Abstract: Traditional robots have rigid underlying structures that limit their ability to interact with their environment. For example, conventional robot manipulators have rigid links and can manipulate objects using only their specialised end effectors. These robots often encounter difficulties operating in unstructured and highly congested environments. A variety of animals and plants exhibit complex movement with soft structures devoid of rigid components. Muscular hydrostats e.g. octopus arms and elephant trunks are almost entirely composed of muscle and connective tissue and plant cells can change shape when pressurised by osmosis. Researchers have been inspired by biology to design and build soft robots. With a soft structure and redundant degrees of freedom, these robots can be used for delicate tasks in cluttered and/or unstructured environments. This paper discusses the novel capabilities of soft robots, describes examples from nature that provide biological inspiration, surveys the state of the art and outlines existing challenges in soft robot design, modelling, fabrication and control.

1,295 citations