scispace - formally typeset
Search or ask a question
Author

Mark Nolden

Bio: Mark Nolden is an academic researcher from University of Cologne. The author has contributed to research in topics: Proteases & Protease. The author has an hindex of 3, co-authored 3 publications receiving 554 citations.

Papers
More filters
Journal ArticleDOI
21 Oct 2005-Cell
TL;DR: A regulatory role of an AAA protease for mitochondrial protein synthesis in yeast is described and mitochondrial defects associated with m-AAA protease mutants in yeast are rationalize and shed new light on the mechanism of axonal degeneration in HSP.

361 citations

Journal ArticleDOI
TL;DR: Findings reveal for the first time a non‐proteolytic function of the m‐AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.
Abstract: Maturation of cytochrome c peroxidase (Ccp1) in mitochondria occurs by the subsequent action of two conserved proteases in the inner membrane: the m-AAA protease, an ATP-dependent protease degrading misfolded proteins and mediating protein processing, and the rhomboid protease Pcp1, an intramembrane cleaving peptidase. Neither the determinants preventing complete proteolysis of certain substrates by the m-AAA protease, nor the obligatory requirement of the m-AAA protease for rhomboid cleavage is currently understood. Here, we describe an intimate and unexpected functional interplay of both proteases. The m-AAA protease mediates the ATP-dependent membrane dislocation of Ccp1 independent of its proteolytic activity. It thereby ensures the correct positioning of Ccp1 within the membrane bilayer allowing intramembrane cleavage by rhomboid. Decreasing the hydrophobicity of the Ccp1 transmembrane segment facilitates its dislocation from the membrane and renders rhomboid cleavage m-AAA protease-independent. These findings reveal for the first time a non-proteolytic function of the m-AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.

113 citations

Journal ArticleDOI
TL;DR: A constant efflux of peptides from mitochondria is demonstrated and new insight is provided into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.

104 citations


Cited by
More filters
Journal ArticleDOI
21 Aug 2009-Cell
TL;DR: Recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis are discussed.

1,271 citations

Journal ArticleDOI
TL;DR: M mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a ΔΨ‐dependent manner through proteolytic cleavage of Mgm1, the yeast homolog of O PA1.
Abstract: The dynamin-like GTPase OPA1, a causal gene product of human dominant optic atrophy, functions in mitochondrial fusion and inner membrane remodeling. It has several splice variants and even a single variant is found as several processed forms, although their functional significance is unknown. In yeast, mitochondrial rhomboid protease regulates mitochondrial function and morphology through proteolytic cleavage of Mgm1, the yeast homolog of OPA1. We demonstrate that OPA1 variants are synthesized with a bipartite-type mitochondrial targeting sequence. During import, the matrix-targeting signal is removed and processed forms (L-isoforms) are anchored to the inner membrane in type I topology. L-isoforms undergo further processing in the matrix to produce S-isoforms. Knockdown of OPA1 induced mitochondrial fragmentation, whose network morphology was recovered by expression of L-isoform but not S-isoform, indicating that only L-isoform is fusion-competent. Dissipation of membrane potential, expression of m-AAA protease paraplegin, or induction of apoptosis stimulated this processing along with the mitochondrial fragmentation. Thus, mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a ΔΨ-dependent manner.

810 citations

Journal ArticleDOI
03 Aug 2012-Science
TL;DR: The mechanism by which ATFS-1 (activating transcription factor associated with stress–1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans is examined and it is found that the key point of regulation is the mitochondrial import efficiency of ATfs-1.
Abstract: To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress–1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans. We found that the key point of regulation is the mitochondrial import efficiency of ATFS-1. In addition to a nuclear localization sequence, ATFS-1 has an N-terminal mitochondrial targeting sequence that is essential for UPRmt repression. Normally, ATFS-1 is imported into mitochondria and degraded. However, during mitochondrial stress, we found that import efficiency was reduced, allowing a percentage of ATFS-1 to accumulate in the cytosol and traffic to the nucleus. Our results show that cells monitor mitochondrial import efficiency via ATFS-1 to coordinate the level of mitochondrial dysfunction with the protective transcriptional response.

769 citations

Journal ArticleDOI
TL;DR: The results suggest that mammalian cells have multiple pathways to control mitochondrial fusion through regulation of the spectrum of OPA1 isoforms.
Abstract: OPA1, a dynamin-related guanosine triphosphatase mutated in dominant optic atrophy, is required for the fusion of mitochondria. Proteolytic cleavage by the mitochondrial processing peptidase generates long isoforms from eight messenger RNA (mRNA) splice forms, whereas further cleavages at protease sites S1 and S2 generate short forms. Using OPA1-null cells, we developed a cellular system to study how individual OPA1 splice forms function in mitochondrial fusion. Only mRNA splice forms that generate a long isoform in addition to one or more short isoforms support substantial mitochondrial fusion activity. On their own, long and short OPA1 isoforms have little activity, but, when coexpressed, they functionally complement each other. Loss of mitochondrial membrane potential destabilizes the long isoforms and enhances the cleavage of OPA1 at S1 but not S2. Cleavage at S2 is regulated by the i-AAA protease Yme1L. Our results suggest that mammalian cells have multiple pathways to control mitochondrial fusion through regulation of the spectrum of OPA1 isoforms.

717 citations

Journal ArticleDOI
TL;DR: This work has shown that protein translocases do not function as independent units but are integrated into dynamic networks and are connected to machineries that function in bioenergetics, mitochondrial morphology and coupling to the endoplasmic reticulum.
Abstract: Mitochondria contain approximately 1,000 different proteins, most of which are imported from the cytosol. Two import pathways that direct proteins into the mitochondrial inner membrane and matrix have been known for many years. The identification of numerous new transport components in recent proteomic studies has led to novel mechanistic insight into these pathways and the discovery of new import pathways into the outer membrane and intermembrane space. Protein translocases do not function as independent units but are integrated into dynamic networks and are connected to machineries that function in bioenergetics, mitochondrial morphology and coupling to the endoplasmic reticulum.

619 citations