scispace - formally typeset
Search or ask a question
Author

Mark O. Robbins

Bio: Mark O. Robbins is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Contact area & Slip (materials science). The author has an hindex of 64, co-authored 224 publications receiving 14068 citations. Previous affiliations of Mark O. Robbins include University of California, Berkeley & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors report on molecular-dynamics simulations of Lennard-Jones liquids sheared between two solid walls and show that the degree of slip is directly related to the amount of structure induced in the fluid by the periodic potential from the solid walls.
Abstract: We report on molecular-dynamics simulations of Lennard-Jones liquids sheared between two solid walls. The velocity fields, flow boundary conditions, and fluid structure were studied for a variety of wall and fluid properties. A broad spectrum of boundary conditions was observed including slip, no-slip, and locking. We show that the degree of slip is directly related to the amount of structure induced in the fluid by the periodic potential from the solid walls. For weak wall-fluid interactions there is little ordering and slip was observed. At large interactions, substantial epitaxial ordering was induced and the first one or two fluid layers became locked to the wall. This epitaxial ordering was enhanced when the wall and fluid densities were equal. For unequal densities, high-order commensurate structures formed in the first fluid layer creating slip within the fluid.

638 citations

Journal ArticleDOI
16 Jun 2005-Nature
TL;DR: This work uses molecular simulations to test the limits of contact mechanics under ideal conditions and indicates that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory.
Abstract: Forces acting within the area of atomic contact between surfaces play a central role in friction and adhesion. Such forces are traditionally calculated using continuum contact mechanics, which is known to break down as the contact radius approaches atomic dimensions. Yet contact mechanics is being applied at ever smaller lengths, driven by interest in shrinking devices to nanometre scales, creating nanostructured materials with optimized mechanical properties, and understanding the molecular origins of macroscopic friction and adhesion. Here we use molecular simulations to test the limits of contact mechanics under ideal conditions. Our findings indicate that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory. Contact areas and stresses may be changed by a factor of two, whereas friction and lateral contact stiffness change by an order of magnitude. These variations are likely to affect continuum predictions for many macroscopic rough surfaces, where studies show that the total contact area is broken up into many separate regions with very small mean radius.

590 citations

Journal ArticleDOI
TL;DR: The phase diagram and dynamical properties of systems of particles interacting through a repulsive screened Coulomb (Yukawa) potential have been calculated using molecular and lattice dynamics techniques as mentioned in this paper.
Abstract: The phase diagram and dynamical properties of systems of particles interacting through a repulsive screened Coulomb (Yukawa) potential have been calculated using molecular and lattice dynamics techniques. The phase diagram contains both a melting transition and a transition from fcc to bcc crystalline phases. These phase transitions have been studied as a function of potential shape (screening length) and compared to phenomenological criteria for transition temperatures such as those of Lindemann and of Hansen and Verlet. The transition from fcc to bcc with increasing temperature is shown to result from a higher entropy in the bcc phase because of its softer shear modes. Even when the stable solid phase below the melting temperature is fcc, bcc‐like local order is found in the liquid phase. This may substantially slow crystallization. The calculated phase diagram and shear modulus are in good agreement with experiments on colloidal suspensions of polystyrene spheres. The single particle dynamics of Yukawa systems show several unusual features. There is a pronounced subdiffusive regime in liquids near and below the melting temperature. This regime reflects the existence of two time scales: a typical phonon period, and the time for a particle to feel a new environment. The second time scale becomes longer as the temperature is lowered or the range of interaction (screening length) increases.

547 citations

Journal ArticleDOI
09 Nov 1990-Science
TL;DR: Simulation results indicate that the origin of stick-slip motion is thermodynamic instability of the sliding state, rather than a dynamic instability as usually assumed.
Abstract: Molecular dynamics simulations of atomically thin, fluid films confined between two solid plates are described. For a broad range of parameters, a generic stick-slip motion is observed, consistent with the results of recent boundary lubrication experiments. Static plates induce crystalline order in the film. Stick-slip motion involves periodic shear-melting transitions and recrystllization of the film. Uniform motion occurs at high velocities where the film no longer has time to order. These results indicate that the origin of stick-slip motion is thermodynamic instability of the sliding state, rather than a dynamic instability as usually assumed.

473 citations

Journal ArticleDOI
TL;DR: In this article, molecular-dynamics simulations of immiscible fluids confined between solid walls and sheared in a Couette geometry were performed as a function of shear rate for a range of wall and fluid properties.
Abstract: Molecular-dynamics simulations of two immiscible fluids confined between solid walls and sheared in a Couette geometry were performed as a function of shear rate for a range of wall and fluid properties. Changes with capillary number in the interface shape and dynamic contact angle were consistent with previous analytic results. Computed velocity fields showed that the usual no-slip boundary condition broke down within \ensuremath{\sim}2 atomic spacings from the contact line. The slip appears to be associated with the breakdown of local hydrodynamic theory at atomic scales.

439 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: In this article, an extensive molecular-dynamics simulation for a bead spring model of a melt of linear polymers is presented, where the number of monomers N covers the range from N=5 to N=400.
Abstract: We present an extensive molecular‐dynamics simulation for a bead spring model of a melt of linear polymers. The number of monomers N covers the range from N=5 to N=400. Since the entanglement length Ne is found to be approximately 35, our chains cover the crossover from the nonentangled to the entangled regime. The Rouse model provides an excellent description for short chains N

3,232 citations