scispace - formally typeset
Search or ask a question
Author

Mark O. Winfield

Bio: Mark O. Winfield is an academic researcher from University of Bristol. The author has contributed to research in topics: SNP genotyping & Genotyping. The author has an hindex of 22, co-authored 43 publications receiving 3263 citations. Previous affiliations of Mark O. Winfield include University of Milan & University of Cambridge.

Papers
More filters
Journal ArticleDOI
TL;DR: This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length SNP (AFLP) and sequence-tagged microsatellites (SSR).
Abstract: A number of PCR-based techniques can be used to detect polymorphisms in plants. For their wide-scale usage in germplasm characterisation and breeding it is important that these marker technologies can be exchanged between laboratories, which in turn requires that they can be standardised to yield reproducible results, so that direct collation and comparison of the data are possible. This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length polymorphism (AFLP) and sequence-tagged microsatellites (SSR). For each technique, an optimal system was chosen, which had been standardised and routinely used by one laboratory. This system (genetic screening package) was distributed to different participating laboratories in the network and the results obtained compared with those of the original sender. Different experiences were gained in this exchange experiment with the different techniques. RAPDs proved difficult to reproduce. For AFLPs, a single-band difference was observed in one track, whilst SSR alleles were amplified by all laboratories, but small differences in their sizing were obtained.

895 citations

Journal ArticleDOI
TL;DR: The data identify the SNX27–retromer as a major endosomal recycling hub required to maintain cellular nutrient homeostasis and establish that direct interaction of theSNX27 PDZ domain with the retromer subunit VPS26 is necessary and sufficient to prevent lysosomal entry of SNX 27 cargo.
Abstract: The PDZ-domain-containing sorting nexin 27 (SNX27) promotes recycling of internalized transmembrane proteins from endosomes to the plasma membrane by linking PDZ-dependent cargo recognition to retromer-mediated transport. Here, we employed quantitative proteomics of the SNX27 interactome and quantification of the surface proteome of SNX27- and retromer-suppressed cells to dissect the assembly of the SNX27 complex and provide an unbiased global view of SNX27-mediated sorting. Over 100 cell surface proteins, many of which interact with SNX27, including the glucose transporter GLUT1, the Menkes disease copper transporter ATP7A, various zinc and amino acid transporters, and numerous signalling receptors, require SNX27-retromer to prevent lysosomal degradation and maintain surface levels. Furthermore, we establish that direct interaction of the SNX27 PDZ domain with the retromer subunit VPS26 is necessary and sufficient to prevent lysosomal entry of SNX27 cargo. Our data identify the SNX27-retromer as a major endosomal recycling hub required to maintain cellular nutrient homeostasis.

414 citations

Journal ArticleDOI
TL;DR: The identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources are described.
Abstract: In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site.

326 citations

Journal ArticleDOI
TL;DR: An overview of the main features of cold acclimation is provided with particular focus on transcriptome reprogramming and some of the important differences between cold-hardy and cold-sensitive varieties are highlighted.
Abstract: Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity.

264 citations

Journal ArticleDOI
TL;DR: The identification of 35 143 single nucleotide polymorphism‐based markers are described, which are highly suited to the genotyping of elite hexaploid wheat accessions and are suitable for generating high‐density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis.
Abstract: Summary Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilisation of genetic diversity in hexaploid wheat. Starting with a large collection of 819,571 previously characterised wheat markers, here we describe the identification of 35,143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high density Affymetrix Axiom® genotyping array (the Wheat Breeders’ Array), in a high throughput 384 microplate configuration, to characterise a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders’ Array is also suitable for generating high density genetic maps of previously uncharacterised populations and for characterising novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site “CerealsDB”. This article is protected by copyright. All rights reserved.

246 citations


Cited by
More filters
Journal ArticleDOI
Klaus F. X. Mayer, Jane Rogers, Jaroslav Doležel1, Curtis J. Pozniak2, Kellye Eversole, Catherine Feuillet3, Bikram S. Gill4, Bernd Friebe4, Adam J. Lukaszewski5, Pierre Sourdille6, Takashi R. Endo7, M. Kubaláková1, Jarmila Číhalíková1, Zdeňka Dubská1, Jan Vrána1, Romana Šperková1, Hana Šimková1, Melanie Febrer8, Leah Clissold, Kirsten McLay, Kuldeep Singh9, Parveen Chhuneja9, Nagendra K. Singh10, Jitendra P. Khurana11, Eduard Akhunov4, Frédéric Choulet6, Adriana Alberti, Valérie Barbe, Patrick Wincker, Hiroyuki Kanamori12, Fuminori Kobayashi12, Takeshi Itoh12, Takashi Matsumoto12, Hiroaki Sakai12, Tsuyoshi Tanaka12, Jianzhong Wu12, Yasunari Ogihara13, Hirokazu Handa12, P. Ron Maclachlan2, Andrew G. Sharpe14, Darrin Klassen14, David Edwards, Jacqueline Batley, Odd-Arne Olsen, Simen Rød Sandve15, Sigbjørn Lien15, Burkhard Steuernagel16, Brande B. H. Wulff16, Mario Caccamo, Sarah Ayling, Ricardo H. Ramirez-Gonzalez, Bernardo J. Clavijo, Jonathan M. Wright, Matthias Pfeifer, Manuel Spannagl, Mihaela Martis, Martin Mascher17, Jarrod Chapman18, Jesse Poland4, Uwe Scholz17, Kerrie Barry18, Robbie Waugh19, Daniel S. Rokhsar18, Gary J. Muehlbauer, Nils Stein17, Heidrun Gundlach, Matthias Zytnicki20, Véronique Jamilloux20, Hadi Quesneville20, Thomas Wicker21, Primetta Faccioli, Moreno Colaiacovo, Antonio Michele Stanca, Hikmet Budak22, Luigi Cattivelli, Natasha Glover6, Lise Pingault6, Etienne Paux6, Sapna Sharma, Rudi Appels23, Matthew I. Bellgard23, Brett Chapman23, Thomas Nussbaumer, Kai Christian Bader, Hélène Rimbert, Shichen Wang4, Ron Knox, Andrzej Kilian, Michael Alaux20, Françoise Alfama20, Loïc Couderc20, Nicolas Guilhot6, Claire Viseux20, Mikaël Loaec20, Beat Keller21, Sébastien Praud 
18 Jul 2014-Science
TL;DR: Insight into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.
Abstract: An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.

1,421 citations

Journal ArticleDOI
TL;DR: Four case studies representing a large variety of population genetics investigations differing in their sampling strategies, in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs), and the estimated genotyping error rate are considered.
Abstract: Genotyping errors occur when the genotype determined after molecular analysis does not correspond to the real genotype of the individual under consideration. Virtually every genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo subject in population genetics, even though they might greatly bias the final conclusions, especially for studies based on individual identification. Here, we consider four case studies representing a large variety of population genetics investigations differing in their sampling strategies (noninvasive or traditional), in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch leaves. Main sources of errors were allelic dropouts for microsatellites and differences in peak intensities for AFLPs, but in both cases human factors were non-negligible error generators. Therefore, tracking genotyping errors and identifying their causes are necessary to clean up the data sets and validate the final results according to the precision required. In addition, we propose the outline of a protocol designed to limit and quantify genotyping errors at each step of the genotyping process. In particular, we recommend (i) several efficient precautions to prevent contaminations and technical artefacts; (ii) systematic use of blind samples and automation; (iii) experience and rigor for laboratory work and scoring; and (iv) systematic reporting of the error rate in population genetics studies.

1,391 citations

Journal ArticleDOI
TL;DR: A protocol for estimating error rates is proposed and it is recommended that these measures be systemically reported to attest the reliability of published genotyping studies.
Abstract: Although genotyping errors affect most data and can markedly influence the biological conclusions of a study, they are too often neglected. Errors have various causes, but their occurrence and effect can be limited by considering these causes in the production and analysis of the data. Procedures that have been developed for dealing with errors in linkage studies, forensic analyses and non-invasive genotyping should be applied more broadly to any genetic study. We propose a protocol for estimating error rates and recommend that these measures be systemically reported to attest the reliability of published genotyping studies.

1,143 citations

Journal ArticleDOI
TL;DR: Because of their high replicability and ease of use, AFLP markers have emerged as a major new type of genetic marker with broad application in systematics, pathotyping, population genetics, DNA fingerprinting and quantitative trait loci (QTL) mapping.
Abstract: Amplified fragment length polymorphisms (AFLPs) are polymerase chain reaction (PCR)-based markers for the rapid screening of genetic diversity. AFLP methods rapidly generate hundreds of highly replicable markers from DNA of any organism; thus, they allow high-resolution genotyping of fingerprinting quality. The time and cost efficiency, replicability and resolution of AFLPs are superior or equal to those of other markers [allozymes, random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), microsatellites], except that AFLP methods primarily generate dominant rather than co-dominant markers. Because of their high replicability and ease of use, AFLP markers have emerged as a major new type of genetic marker with broad application in systematics, pathotyping, population genetics, DNA fingerprinting and quantitative trait loci (QTL) mapping.

992 citations

Journal ArticleDOI
TL;DR: Results from population samples of the two plant species show that there is a negative relationship between AFLP fragment size and fragment population frequency, and Monte Carlo simulations reveal that size homoplasy, arising from pulling together nonhomologous fragments of the same size, generates patterns similar to those observed in P. lunatus and L. perenne.
Abstract: We investigate the distribution of sizes of fragments obtained from the amplified fragment length polymorphism (AFLP) marker technique. We find that empirical distributions obtained in two plant species, Phaseolus lunatus and Lolium perenne, are consistent with the expected distributions obtained from analytical theory and from numerical simulations. Our results indicate that the size distribution is strongly asymmetrical, with a much higher proportion of small than large fragments, that it is not influenced by the number of selective nucleotides nor by genome size but that it may vary with genome-wide GC-content, with a higher proportion of small fragments in cases of lower GC-content when considering the standard AFLP protocol with the enzyme MseI. Results from population samples of the two plant species show that there is a negative relationship between AFLP fragment size and fragment population frequency. Monte Carlo simulations reveal that size homoplasy, arising from pulling together nonhomologous fragments of the same size, generates patterns similar to those observed in P. lunatus and L. perenne because of the asymmetry of the size distribution. We discuss the implications of these results in the context of estimating genetic diversity with AFLP markers.

813 citations