scispace - formally typeset
Search or ask a question
Author

Mark P. Hendricks

Other affiliations: Northwestern University
Bio: Mark P. Hendricks is an academic researcher from Columbia University. The author has contributed to research in topics: Nanocrystal & Cadmium sulfide. The author has an hindex of 9, co-authored 12 publications receiving 1639 citations. Previous affiliations of Mark P. Hendricks include Northwestern University.

Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that nanocrystals lack a single chemical formula, but are instead dynamic structures with concentration-dependent compositions, and suggest that ligands displace L-M(O2CR)2 by cooperatively complexing the displaced metal ion as well as the nanocrystal.
Abstract: We demonstrate that metal carboxylate complexes (L–M(O2CR)2, R = oleyl, tetradecyl, M = Cd, Pb) are readily displaced from carboxylate-terminated ME nanocrystals (ME = CdSe, CdS, PbSe, PbS) by various Lewis bases (L = tri-n-butylamine, tetrahydrofuran, tetradecanol, N,N-dimethyl-n-butylamine, tri-n-butylphosphine, N,N,N′,N′-tetramethylbutylene-1,4-diamine, pyridine, N,N,N′,N′-tetramethylethylene-1,2-diamine, n-octylamine). The relative displacement potency is measured by 1H NMR spectroscopy and depends most strongly on geometric factors such as sterics and chelation, although also on the hard/soft match with the cadmium ion. The results suggest that ligands displace L–M(O2CR)2 by cooperatively complexing the displaced metal ion as well as the nanocrystal. Removal of up to 90% of surface-bound Cd(O2CR)2 from CdSe and CdS nanocrystals decreases the Cd/Se ratio from 1.1 ± 0.06 to 1.0 ± 0.05, broadens the 1Se–2S3/2h absorption, and decreases the photoluminescence quantum yield (PLQY) from 10% to <1% (CdSe) an...

713 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates, and methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength are discussed, to convert between kinetically trapped and thermodynamically favorable states.
Abstract: ConspectusPeptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature.Recent studies have shown that supramolecular systems, such as P...

361 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: A library of thioureas whose substitution pattern tunes their conversion reactivity over more than five orders of magnitude is reported and it is demonstrated that fasterThiourea conversion kinetics increases the extent of crystal nucleation.
Abstract: Controlling the size of colloidal nanocrystals is essential to optimizing their performance in optoelectronic devices, catalysis, and imaging applications. Traditional synthetic methods control size by terminating the growth, an approach that limits the reaction yield and causes batch-to-batch variability. Herein we report a library of thioureas whose substitution pattern tunes their conversion reactivity over more than five orders of magnitude and demonstrate that faster thiourea conversion kinetics increases the extent of crystal nucleation. Tunable kinetics thereby allows the nanocrystal concentration to be adjusted and a desired crystal size to be prepared at full conversion. Controlled precursor reactivity and quantitative conversion improve the batch-to-batch consistency of the final nanocrystal size at industrially relevant reaction scales.

334 citations

Journal ArticleDOI
TL;DR: The importance of leveraging the electronic character of the organic cation to improve optoelectronic properties and thus the photovoltaic performance of these chemically stable low n layered perovskites is demonstrated.
Abstract: Layered perovskites with the formula (R–NH3)2PbI4 have excellent environmental stability but poor photovoltaic function due to the preferential orientation of the semiconducting layer parallel to the substrate and the typically insulating nature of the R–NH3+ cation. Here, we report a series of these n = 1 layered perovskites with the form (aromatic-O-linker-NH3)2PbI4 where the aromatic moiety is naphthalene, pyrene, or perylene and the linker is ethyl, propyl, or butyl. These materials achieve enhanced conductivity perpendicular to the inorganic layers due to better energy level matching between the inorganic layers and organic galleries. The enhanced conductivity and visible absorption of these materials led to a champion power conversion efficiency of 1.38%, which is the highest value reported for any n = 1 layered perovskite, and it is an order of magnitude higher efficiency than any other n = 1 layered perovskite oriented with layers parallel to the substrate. These findings demonstrate the importanc...

230 citations

Journal ArticleDOI
TL;DR: In this article, the chemical reactions between common precursors used in the synthesis of metal chalcogenide nanocrystals and how they affect the mechanism and kinetics of nanocrystal growth are surveyed.
Abstract: We survey the chemical reactions between common precursors used in the synthesis of metal chalcogenide nanocrystals and outline how they affect the mechanism and kinetics of nanocrystal growth. We emphasize syntheses of cadmium selenide and cadmium sulfide where a variety of metal and chalcogenide precursors have been explored, though this is supplemented by studies of zinc and lead chalcogenide formation where appropriate. This review is organized into three sections, highlighting kinetics, metal precursors, and chalcogenide precursors, respectively. Section I is dedicated to the role of precursor conversion as a source of monomers and the importance of the supply rate on nanocrystal nucleation and growth. Section II describes the structure and reactivity of cadmium carboxylates, phosphonates, and chalcogenolates. Section III describes the reaction chemistry of commonly employed chalcogenide precursors and the mechanisms by which they react with metal precursors.

180 citations


Cited by
More filters
Journal ArticleDOI
26 Jan 2016-ACS Nano
TL;DR: It is found that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures, and when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity.
Abstract: Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. 1H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We fi...

1,267 citations

Journal ArticleDOI
TL;DR: The role of surface ligands in tuning and rationally designing properties of functional nanomaterials and their importance for biomedical and optoelectronic applications is focused on and an assessment of application-targeted surface engineering is concluded.
Abstract: All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands - molecules that bind to the surface - are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

1,247 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and expensive and therefore expensive and expensive process of designing and installing solar panels.
Abstract: Graham H. Carey,† Ahmed L. Abdelhady,‡ Zhijun Ning, Susanna M. Thon, Osman M. Bakr,‡ and Edward H. Sargent*,† †Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ‡Division of Physical Sciences and Engineering, Solar & Photovoltaics Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States

1,036 citations

Journal ArticleDOI
22 Jan 2015-ACS Nano
TL;DR: The state of the art in research on colloidal NCs is reviewed focusing on the most recent works published in the last 2 years, where semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available.
Abstract: Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenom...

988 citations

Journal ArticleDOI
26 Aug 2016-Science
TL;DR: Recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices and new ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces are reviewed.
Abstract: BACKGROUND The Information Age was founded on the semiconductor revolution, marked by the growth of high-purity semiconductor single crystals. The resultant design and fabrication of electronic devices exploits our ability to control the concentration, motion, and dynamics of charge carriers in the bulk semiconductor solid state. Our desire to introduce electronics everywhere is fueled by opportunities to create intelligent and enabling devices for the information, communication, consumer product, health, and energy sectors. This demand for ubiquitous electronics is spurring the design of materials that exhibit engineered physical properties and that can enable new fabrication methods for low-cost, large-area, and flexible devices. Semiconductors, which are at the heart of electronics and optoelectronics, come with high demands on chemical purity and structural perfection. Alternatives to silicon technology are expected to combine the electronic and optical properties of inorganic semiconductors (high charge carrier mobility, precise n- and p-type doping, and the ability to engineer the band gap energy) with the benefits of additive device manufacturing: low cost, large area, and the use of solution-based fabrication techniques. Along these lines, colloidal semiconductor quantum dots (QDs), which are nanoscale crystals of analogous bulk semiconductor crystals, offer a powerful platform for device engineers. Colloidal QDs may be tailored in size, shape, and composition and their surfaces functionalized with molecular ligands of diverse chemistry. At the nanoscale (typically 2 to 20 nm), quantum and dielectric confinement effects give rise to the prized size-, shape-, and composition-tunable electronic and optical properties of QDs. Surface ligands enable the stabilization of QDs in the form of colloids, allowing their bottom-up assembly into QD solids. The physical properties of QD solids can be designed by selecting the characteristics of the individual QD building blocks and by controlling the electronic communication between the QDs in the solid state. These QD solids can be engineered with application-specific electronic and optoelectronic properties for the large-area, solution-based assembly of devices. ADVANCES The large surface-to-volume ratio of QDs places a substantial importance on the composition and structure of the surface in defining the physical properties that govern the concentration, motion, and dynamics of excitations and charge carriers in QD solids. Recent studies have shown pathways to passivate uncoordinated atoms at the QD surface that act to trap and scatter charge carriers. Surface atoms, ligands, and ions can serve as dopants to control the electron affinity of QD solids. Surface ligands and surrounding matrices control the barriers to electronic, excitonic, and thermal transport between QDs and between QDs and matrices. New ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces. These advances in engineering the chemical and physical properties of the QD surface have been translated into recent achievements of high-mobility transistors and circuits, high-quantum-yield photodetectors and light-emitting devices, and high-efficiency photovoltaic devices. OUTLOOK The dominant role and dynamic nature of the QD surface, and the strong motive to build novel QD devices, will drive the exploration of new surface chemistries and matrix materials, processes for their assembly and integration with other materials in devices, and measurements and simulations with which to map the relationship between surface chemistry and materials and device properties. Challenges remain to achieve full control over the carrier type, concentration, and mobility in the QD channel and the barriers and traps at device interfaces that limit the gain and speed of QD electronics. Surface chemistries that allow for both long carrier lifetime and high carrier mobility and the freedom to engineer the bandgap and band alignment of QDs and other device layers are needed to exploit physics particular to QDs and to advance device architectures that contribute to improving the performance of QD optoelectronics. The importance of thermal transport in QD solids and their devices is an essential emerging topic that promises to become of greater importance as we develop QD devices.

930 citations