scispace - formally typeset
Search or ask a question
Author

Mark Pruzanski

Other affiliations: National Institutes of Health
Bio: Mark Pruzanski is an academic researcher from Intercept Pharmaceuticals. The author has contributed to research in topics: Farnesoid X receptor & Bile acid. The author has an hindex of 23, co-authored 38 publications receiving 5380 citations. Previous affiliations of Mark Pruzanski include National Institutes of Health.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice, and suggested that pharmacological targeting of T GR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.

1,412 citations

Journal ArticleDOI
TL;DR: How the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis are reviewed.
Abstract: Bile acids are increasingly being appreciated as complex metabolic integrators and signalling factors and not just as lipid solubilizers and simple regulators of bile-acid homeostasis. It is therefore not surprising that a number of bile-acid-activated signalling pathways have become attractive therapeutic targets for metabolic disorders. Here, we review how the signalling functions of bile acids can be exploited in the development of drugs for obesity, type 2 diabetes, hypertriglyceridaemia and atherosclerosis, as well as other associated chronic diseases such as non-alcoholic steatohepatitis.

1,107 citations

Journal ArticleDOI
TL;DR: Administration of 25 or 50 mg OCA for 6 weeks was well tolerated, increased insulin sensitivity, and reduced markers of liver inflammation and fibrosis in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease.

794 citations

Journal ArticleDOI
TL;DR: Obeticholic acid administered with ursodiol or as monotherapy for 12 months in patients with primary biliary cholangitis resulted in decreases from baseline in alkaline phosphatase and total bilirubin levels that differed significantly from the changes observed with placebo.
Abstract: Background Primary biliary cholangitis (formerly called primary biliary cirrhosis) can progress to cirrhosis and death despite ursodiol therapy. Alkaline phosphatase and bilirubin levels correlate with the risk of liver transplantation or death. Obeticholic acid, a farnesoid X receptor agonist, has shown potential benefit in patients with this disease. Methods In this 12-month, double-blind, placebo-controlled, phase 3 trial, we randomly assigned 217 patients who had an inadequate response to ursodiol or who found the side effects of ursodiol unacceptable to receive obeticholic acid at a dose of 10 mg (the 10-mg group), obeticholic acid at a dose of 5 mg with adjustment to 10 mg if applicable (the 5-10-mg group), or placebo. The primary end point was an alkaline phosphatase level of less than 1.67 times the upper limit of the normal range, with a reduction of at least 15% from baseline, and a normal total bilirubin level. Results Of 216 patients who underwent randomization and received at least one dose of obeticholic acid or placebo, 93% received ursodiol as background therapy. The primary end point occurred in more patients in the 5-10-mg group (46%) and the 10-mg group (47%) than in the placebo group (10%; P Conclusions Obeticholic acid administered with ursodiol or as monotherapy for 12 months in patients with primary biliary cholangitis resulted in decreases from baseline in alkaline phosphatase and total bilirubin levels that differed significantly from the changes observed with placebo. There were more serious adverse events with obeticholic acid. (Funded by Intercept Pharmaceuticals; POISE ClinicalTrials.gov number, NCT01473524; Current Controlled Trials number, ISRCTN89514817.).

747 citations

Journal ArticleDOI
TL;DR: The potential of the semi-synthetic BA derivative obeticholic acid (OCA), a first-in-class FXR agonist, as a safe and effective drug to address this significant unmet medical need of NASH.

251 citations


Cited by
More filters
Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
Abstract: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

3,436 citations

Journal ArticleDOI
TL;DR: The final purpose is to improve patient care and awareness of the importance of NAFLD, and to assist stakeholders in the decision-making process by providing evidence-based data, which also takes into consideration the burden of clinical management for the healthcare system.

3,117 citations

Journal ArticleDOI
TL;DR: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization.
Abstract: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.

2,419 citations

Journal ArticleDOI
TL;DR: Understanding of pathogenic mechanisms and clinical features of NAFLD is driving progress in therapeutic strategies now in clinical trials and the emerging targets for drug development that involve either single agents or combination therapies intended to arrest or reverse disease progression are discussed.
Abstract: There has been a rise in the prevalence of nonalcoholic fatty liver disease (NAFLD), paralleling a worldwide increase in diabetes and metabolic syndrome. NAFLD, a continuum of liver abnormalities from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), has a variable course but can lead to cirrhosis and liver cancer. Here we review the pathogenic and clinical features of NAFLD, its major comorbidities, clinical progression and risk of complications and in vitro and animal models of NAFLD enabling refinement of therapeutic targets that can accelerate drug development. We also discuss evolving principles of clinical trial design to evaluate drug efficacy and the emerging targets for drug development that involve either single agents or combination therapies intended to arrest or reverse disease progression.

2,004 citations