scispace - formally typeset
Search or ask a question
Author

Mark R. Dennis

Bio: Mark R. Dennis is an academic researcher from University of Birmingham. The author has contributed to research in topics: Optical vortex & Polarization (waves). The author has an hindex of 46, co-authored 153 publications receiving 7832 citations. Previous affiliations of Mark R. Dennis include University of Bristol & University of Southampton.


Papers
More filters
Book ChapterDOI
TL;DR: In this article, it was shown that the Poynting vector has features that are not immediately apparent from the intensity alone, nor from global properties of a beam, but can be easily recognized from the analysis of optical vortices and orbital angular momentum.
Abstract: Publisher Summary The widespread availability of spatially and temporally coherent laser sources makes the production of optical vortices inevitable in any experiment involving scattered laser light. The realization of quantized vortices is not specific to optics: these objects occur in all spatial scalar fields. Although optical vortices are often referred to as “points of phase singularity within a cross section of the field,” physical optical fields extend over three dimensions, and the phase singularities are actually lines of perfect destructive interference that are embedded in the volume filled by the light. Optical vortices are examples of the singularity lines within all complicated scalar fields. By comparison, electromagnetic vector fields do not generally have nodes in all components simultaneously. However, vector fields possess singularities associated with the parameterization of elliptical and partial polarization rather than phase. Polarization singularities are present in many situations, ranging from sunlight to the light transmitted by birefringent materials. Their descriptors are more complicated than their scalar counterpart in that they have both handedness and additional categorization. The study of optical vortices and orbital angular momentum has led to a recognition that the energy flow—characterized by the Poynting vector—has features not immediately apparent from the intensity alone, nor from global properties of a beam.

687 citations

Journal ArticleDOI
TL;DR: In this paper, the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face, as well as the exciting prospects for the future that are yet to be realized.
Abstract: Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.

639 citations

Journal ArticleDOI
TL;DR: A new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens is reported.
Abstract: The maximum imaging resolution in classical optics is limited to approximately the wavelength of light used, and subwavelength resolution can only be achieved by advanced imaging schemes. The appeal of the super-oscillatory lens optical microscope described here is that it enables subwavelength imaging with, in principle, unlimited resolution using a modified conventional microscope. The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry–Veselago negative index superlens1, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it2,3,4,5,6, or work only for a narrow class of samples, such as intensely luminescent7,8 or sparse9 objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which—in principle—has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology and apply a numerical optimization algorithm to increase the contrast in light intensity.
Abstract: Guided by a general framework for wavefront engineering, experiments demonstrate that in a light field, lines of zero intensity can be shaped into knotted and linked loops of arbitrary topology. Natural and artificially created light fields in three-dimensional space contain lines of zero intensity, known as optical vortices1,2,3. Here, we describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology. The required complex fields with fibred knots and links4 are constructed from abstract functions with braided zeros and the knot function is then embedded in a propagating light beam. We apply a numerical optimization algorithm to increase the contrast in light intensity, enabling us to observe several optical vortex knots. These knotted nodal lines, as singularities of the wave’s phase, determine the topology of the wave field in space, and should have analogues in other three-dimensional wave systems such as superfluids5 and Bose–Einstein condensates6,7.

401 citations

Journal ArticleDOI
TL;DR: In this article, the geometry of ellipse fields at these singularities, using the Stokes parameters and others to characterize the singular geometry and morphology, was investigated, and the densities and correlations of the different types of polarization singularities were calculated in random polarization fields, and compared to the statistics of phase singularities and random surfaces.

347 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations