scispace - formally typeset
Search or ask a question
Author

Mark S Diamond

Bio: Mark S Diamond is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Immunoediting & Cytotoxic T cell. The author has an hindex of 5, co-authored 6 publications receiving 3034 citations.

Papers
More filters
Journal ArticleDOI
14 Nov 2008-Science
TL;DR: An important role is suggested for CD8α+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection in Batf3–/– mice.
Abstract: Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8α+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8α+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3–/– mice were defective in cross-presentation, and Batf3–/– mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3–/– mice. These results suggest an important role for CD8α+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.

1,701 citations

Journal ArticleDOI
TL;DR: Dendritic cell responsiveness to type I interferon is required for the generation of antitumor T cell responses and tumor rejection.
Abstract: Cancer immunoediting is the process whereby the immune system suppresses neoplastic growth and shapes tumor immunogenicity. We previously reported that type I interferon (IFN-α/β) plays a central role in this process and that hematopoietic cells represent critical targets of type I IFN’s actions. However, the specific cells affected by IFN-α/β and the functional processes that type I IFN induces remain undefined. Herein, we show that type I IFN is required to initiate the antitumor response and that its actions are temporally distinct from IFN-γ during cancer immunoediting. Using mixed bone marrow chimeric mice, we demonstrate that type I IFN sensitivity selectively within the innate immune compartment is essential for tumor-specific T cell priming and tumor elimination. We further show that mice lacking IFNAR1 (IFN-α/β receptor 1) in dendritic cells (DCs; Itgax-Cre+Ifnar1f/f mice) cannot reject highly immunogenic tumor cells and that CD8α+ DCs from these mice display defects in antigen cross-presentation to CD8+ T cells. In contrast, mice depleted of NK cells or mice that lack IFNAR1 in granulocytes and macrophage populations reject these tumors normally. Thus, DCs and specifically CD8α+ DCs are functionally relevant targets of endogenous type I IFN during lymphocyte-mediated tumor rejection.

866 citations

Journal ArticleDOI
TL;DR: It is shown that, like IFN-γ, endogenously producedIFN-α/β was required for the prevention of the growth of primary carcinogen–induced and transplantable tumors.
Abstract: 'Cancer immunoediting' is a process wherein the immune system protects hosts against tumor development and facilitates outgrowth of tumors with reduced immunogenicity. Although interferon-γ (IFN-γ) is known to be involved in this process, the involvement of type I interferons (IFN-α/β) has not been elucidated. We now show that, like IFN-γ, endogenously produced IFN-α/β was required for the prevention of the growth of primary carcinogen–induced and transplantable tumors. Although tumor cells are important IFN-γ targets, they are not functionally relevant sites of the actions of the type I interferons. Instead, host hematopoietic cells are critical IFN-α/β targets during development of protective antitumor responses. Therefore, type I interferons are important components of the cancer immunoediting process and function in a way that does not completely overlap the functions of IFN-γ.

557 citations

Journal ArticleDOI
TL;DR: These mAbs represent much needed tools to more clearly elucidate the biochemistry, cell biology, and physiologic function of the type I IFNs and their receptor in mediating host-protective immunity and immunopathology.
Abstract: Herein we report the generation of mouse monoclonal antibodies (mAbs) specific for the IFNAR-1 subunit of the mouse interferon-alpha/beta (IFN-alpha/beta) receptor (MAR1 mAbs) that block type I IFN receptor signaling and biologic response induction in vitro and in vivo. These mAbs were generated from Ifnar1 (/) mice immunized by in vivo hydrodynamic transfection with a plasmid encoding the extracellular domain (ECD) of murine IFNAR-1. All MAR1 mAbs bound native receptor expressed on cell surfaces and immunoprecipitated IFNAR-1 from solubilized cells, and two mAbs also detected IFNAR-1 by Western blot analysis. in vitro, the mAbs prevented ligand-induced intracellular signaling and induction of a variety of type I IFN-induced biologic responses but had no effect on IFN-gamma-induced responses. The most effective in vitro blocker, MAR1-5A3, also blocked type I IFN-induced antiviral, antimicrobial, and antitumor responses in vivo. We also explored whether murine IFNAR-1 surface expression required the presence of Tyk2. In contrast to Tyk2-deficient human cell lines, comparable IFNAR-1 expression was found on primary cells derived either from wild-type or Tyk2 (/) mice. These mAbs represent much needed tools to more clearly elucidate the biochemistry, cell biology, and physiologic function of the type I IFNs and their receptor in mediating host-protective immunity and immunopathology.

223 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms that underlie cancer immunoediting are defined and the implications for cancer immunotherapy are explored, exploring the paradoxical host-protective and tumor-sculpting roles of immunity on developing tumors.
Abstract: Over the last 12 yr, we have shown that interferony and lymphocytes collaborate to regulate tumor development in mice. Specifically, we found that the immune system not only prevents the growth of primary (carcinogen-induced and spontaneous) and transplanted tumors but also sculpts the immunogenicity of tumors that form. These observations led us to refine the old and controversial “cancer immuno-surveillance” hypothesis of Burnet and Thomas into one that we termed cancer immunoediting that better emphasizes the paradoxical host-protective and tumor-sculpting roles of immunity on developing tumors. Our current work focuses on defining the molecular mechanisms that underlie cancer immunoediting and exploring the implications of this process for cancer immunotherapy.

136 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Signal transducer and activator of transcription proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer, and STAT3 is a promising target to redirect inflammation for cancer therapy.
Abstract: Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.

3,564 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.

3,131 citations

Journal ArticleDOI
TL;DR: Two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment are suggested, which appear to resist immune attack through immune system exclusion or ignorance and may require distinct immunotherapeutic interventions for maximal therapeutic effect.
Abstract: Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.

2,939 citations

Journal ArticleDOI
TL;DR: By parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Abstract: The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.

2,920 citations

Journal ArticleDOI
05 Feb 2010-Science
TL;DR: The current understanding of myeloid lineage development is reviewed and the developmental pathways and cues that drive differentiation are described, which are central to the development of immunologic memory and tolerance in mice.
Abstract: Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.

2,832 citations