scispace - formally typeset
Search or ask a question
Author

Mark S. Longtine

Bio: Mark S. Longtine is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Septin & Septin ring. The author has an hindex of 28, co-authored 45 publications receiving 11569 citations. Previous affiliations of Mark S. Longtine include Oklahoma State University–Stillwater & University of North Carolina at Chapel Hill.

Papers
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A straightforward PCR‐based approach to the deletion, tagging, and overexpression of genes in their normal chromosomal locations in the fission yeast Schizosaccharomyces pombe, and a series of plasmids containing the kanMX6 module, which allows selection of G418‐resistant cells and thus provides a new heterologous marker for use in S. pom be.
Abstract: We describe a straightforward PCR-based approach to the deletion, tagging, and overexpression of genes in their normal chromosomal locations in the fission yeast Schizosaccharomyces pombe. Using this approach and the S. pombe ura4+ gene as a marker, nine genes were deleted with efficiencies of homologous integration ranging from 6 to 63%. We also constructed a series of plasmids containing the kanMX6 module, which allows selection of G418-resistant cells and thus provides a new heterologous marker for use in S. pombe. The modular nature of these constructs allows a small number of PCR primers to be used for a wide variety of gene manipulations, including deletion, overexpression (using the regulatable nmt1 promoter), C- or N-terminal protein tagging (with HA, Myc, GST, or GFP), and partial C- or N-terminal deletions with or without tagging. Nine genes were manipulated using these kanMX6 constructs as templates for PCR. The PCR primers included 60 to 80 bp of flanking sequences homologous to target sequences in the genome. Transformants were screened for homologous integration by PCR. In most cases, the efficiency of homologous integration was > or = 50%, and the lowest efficiency encountered was 17%. The methodology and constructs described here should greatly facilitate analysis of gene function in S. pombe.

2,212 citations

Journal ArticleDOI
04 Apr 1997-Science
TL;DR: The Saccharomyces cerevisiae BNI1 gene product (Bni1p) is a member of the formin family of proteins, which participate in cell polarization, cytokinesis, and vertebrate limb formation.
Abstract: The Saccharomyces cerevisiae BNI1 gene product (Bni1p) is a member of the formin family of proteins, which participate in cell polarization, cytokinesis, and vertebrate limb formation. During mating pheromone response, bni1 mutants showed defects both in polarized morphogenesis and in reorganization of the underlying actin cytoskeleton. In two-hybrid experiments, Bni1p formed complexes with the activated form of the Rho-related guanosine triphosphatase Cdc42p, with actin, and with two actin-associated proteins, profilin and Bud6p (Aip3p). Both Bni1p and Bud6p (like Cdc42p and actin) localized to the tips of mating projections. Bni1p may function as a Cdc42p target that links the pheromone response pathway to the actin cytoskeleton.

667 citations

Journal ArticleDOI
TL;DR: The septins are a novel family of proteins that were first recognized in yeast as proteins associated with the neck filaments and appear to be essential for this process in both fungal and animal cells.

498 citations

Journal ArticleDOI
TL;DR: A network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
Abstract: Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.

328 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 1998-Yeast
TL;DR: A new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications that should further facilitate the rapid analysis of gene function in S. cerevisiae.
Abstract: An important recent advance in the functional analysis of Saccharomyces cerevisiae genes is the development of the one-step PCR-mediated technique for deletion and modification of chromosomal genes This method allows very rapid gene manipulations without requiring plasmid clones of the gene of interest We describe here a new set of plasmids that serve as templates for the PCR synthesis of fragments that allow a variety of gene modifications Using as selectable marker the S cerevisiae TRP1 gene or modules containing the heterologous Schizosaccharomyces pombe his5 + or Escherichia coli kan r gene, these plasmids allow gene deletion, gene overexpression (using the regulatable GAL1 promoter), C- or N-terminal protein tagging [with GFP(S65T), GST, or the 3HA or 13Myc epitope], and partial N- or C-terminal deletions (with or without concomitant protein tagging) Because of the modular nature of the plasmids, they allow eYcient and economical use of a small number of PCR primers for a wide variety of gene manipulations Thus, these plasmids should further facilitate the rapid analysis of gene function in S cerevisiae ? 1998 John Wiley & Sons, Ltd

5,301 citations

Journal ArticleDOI
TL;DR: A novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes is described.
Abstract: Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from ftp://ftp.mshri.on.ca/pub/BIND/Tools/MCODE .

4,599 citations

Journal ArticleDOI
16 Oct 2003-Nature
TL;DR: The construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.
Abstract: A fundamental goal of cell biology is to define the functions of proteins in the context of compartments that organize them in the cellular environment. Here we describe the construction and analysis of a collection of yeast strains expressing full-length, chromosomally tagged green fluorescent protein fusion proteins. We classify these proteins, representing 75% of the yeast proteome, into 22 distinct subcellular localization categories, and provide localization information for 70% of previously unlocalized proteins. Analysis of this high-resolution, high-coverage localization data set in the context of transcriptional, genetic, and protein-protein interaction data helps reveal the logic of transcriptional co-regulation, and provides a comprehensive view of interactions within and between organelles in eukaryotic cells.

4,310 citations

Journal ArticleDOI
16 Oct 2003-Nature
TL;DR: A Saccharomyces cerevisiae fusion library is created where each open reading frame is tagged with a high-affinity epitope and expressed from its natural chromosomal location, and it is found that about 80% of the proteome is expressed during normal growth conditions.
Abstract: The availability of complete genomic sequences and technologies that allow comprehensive analysis of global expression profiles of messenger RNA have greatly expanded our ability to monitor the internal state of a cell. Yet biological systems ultimately need to be explained in terms of the activity, regulation and modification of proteins--and the ubiquitous occurrence of post-transcriptional regulation makes mRNA an imperfect proxy for such information. To facilitate global protein analyses, we have created a Saccharomyces cerevisiae fusion library where each open reading frame is tagged with a high-affinity epitope and expressed from its natural chromosomal location. Through immunodetection of the common tag, we obtain a census of proteins expressed during log-phase growth and measurements of their absolute levels. We find that about 80% of the proteome is expressed during normal growth conditions, and, using additional sequence information, we systematically identify misannotated genes. The abundance of proteins ranges from fewer than 50 to more than 10(6) molecules per cell. Many of these molecules, including essential proteins and most transcription factors, are present at levels that are not readily detectable by other proteomic techniques nor predictable by mRNA levels or codon bias measurements.

3,894 citations

Journal ArticleDOI
10 Jan 2002-Nature
TL;DR: Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies.
Abstract: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

3,674 citations