scispace - formally typeset
Search or ask a question
Author

Mark S. Miesch

Bio: Mark S. Miesch is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Convection & Dynamo. The author has an hindex of 46, co-authored 153 publications receiving 7715 citations. Previous affiliations of Mark S. Miesch include George Washington University & JILA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of three-dimensional numerical simulations of MHD convection within rotating spherical shells using anelastic spherical harmonic (ASH) code on massively parallel supercomputers is presented.
Abstract: The operation of the solar global dynamo appears to involve many dynamical elements, including the generation of fields by the intense turbulence of the deep convection zone, the transport of these fields into the tachocline region near the base of the convection zone, the storage and amplification of toroidal fields in the tachocline by differential rotation, and the destabilization and emergence of such fields due to magnetic buoyancy. Self-consistent magnetohydrodynamic (MHD) simulations that realistically incorporate all of these processes are not yet computationally feasible, although some elements can now be studied with reasonable fidelity. Here we consider the manner in which turbulent compressible convection within the bulk of the solar convection zone can generate large-scale magnetic fields through dynamo action. We accomplish this through a series of three-dimensional numerical simulations of MHD convection within rotating spherical shells using our anelastic spherical harmonic (ASH) code on massively parallel supercomputers. Since differential rotation is a key ingredient in all dynamo models, we also examine here the nature of the rotation profiles that can be sustained within the deep convection zone as strong magnetic fields are built and maintained. We find that the convection is able to maintain a solar-like angular velocity profile despite the influence of Maxwell stresses, which tend to oppose Reynolds stresses and thus reduce the latitudinal angular velocity contrast throughout the convection zone. The dynamo-generated magnetic fields exhibit a complex structure and evolution, with radial fields concentrated in downflow lanes and toroidal fields organized into twisted ribbons that are extended in longitude and achieve field strengths of up to 5000 G. The flows and fields exhibit substantial kinetic and magnetic helicity although systematic hemispherical patterns are only apparent in the former. Fluctuating fields dominate the magnetic energy and account for most of the back-reaction on the flow via Lorentz forces. Mean fields are relatively weak and do not exhibit systematic latitudinal propagation or periodic polarity reversals as in the Sun. This may be attributed to the absence of a tachocline, i.e., a penetrative boundary layer between the convection zone and the deeper radiative interior possessing strong rotational shear. The influence of such a layer will await subsequent studies.

540 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed observational picture has been built up of the internal rotation of our nearest star, showing that the radiative interior is found to rotate roughly uniformly, unlike the predictions of stellar evolution models, which had been that the rotation rate would depend primarily on the distance from the rotation axis.
Abstract: ▪ Abstract Helioseismology has transformed our knowledge of the Sun's rotation. Earlier studies revealed the Sun's surface rotation, but now a detailed observational picture has been built up of the internal rotation of our nearest star. Unlike the predictions of stellar-evolution models, the radiative interior is found to rotate roughly uniformly. The rotation within the convection zone is also very different from prior expectations, which had been that the rotation rate would depend primarily on the distance from the rotation axis. Layers of rotational shear have been discovered at the base of the convection zone and in the subphotospheric layers. Studies of the time variation of rotation have uncovered zonal-flow bands, extending through a substantial fraction of the convection zone, which migrate over the course of the solar cycle, and there are hints of other temporal variations and of a jet-like structure. At the same time, building on earlier work with mean-field models, researchers have made great...

479 citations

Journal ArticleDOI
TL;DR: In this article, the authors review observational, theoretical, and computational investigations of global-scale dynamics in the solar interior and highlight what they have learned from them and how they may be improved.
Abstract: The past few decades have seen dramatic progress in our understanding of solar interior dynamics, prompted by the relatively new science of helioseismology and increasingly sophisticated numerical models. As the ultimate driver of solar variability and space weather, global-scale convective motions are of particular interest from a practical as well as a theoretical perspective. Turbulent convection under the influence of rotation and stratification redistributes momentum and energy, generating differential rotation, meridional circulation, and magnetic fields through hydromagnetic dynamo processes. In the solar tachocline near the base of the convection zone, strong angular velocity shear further amplifies fields which subsequently rise to the surface to form active regions. Penetrative convection, instabilities, stratified turbulence, and waves all add to the dynamical richness of the tachocline region and pose particular modeling challenges. In this article we review observational, theoretical, and computational investigations of global-scale dynamics in the solar interior. Particular emphasis is placed on high-resolution global simulations of solar convection, highlighting what we have learned from them and how they may be improved.

377 citations

Journal ArticleDOI
TL;DR: In this article, three-dimensional simulations of compressible, penetrative convection in rotating spherical shells in both laminar and turbulent parameter regimes are presented, where the convective structure is dominated by ii banana cells, and the turbulent case is much more complex, with an intricate, rapidly evolving down-ow network in the upper convection zone and an intermittent, plume-dominated structure in the lower convection region.
Abstract: Rotationally constrained convection possesses velocity correlations that transport momentum and drive mean —ows such as diUerential rotation. The nature of this transport can be very complex in turbu- lent —ow regimes, where large-scale, coherent vorticity structures and mean —ows can be established by smaller scale turbulence through inverse cascades. The dynamics of the highly turbulent solar convection zone therefore may be quite diUerent than in early global-scale numerical models, which were limited by computational resources to nearly laminar —ows. Recent progress in high-performance computing tech- nology and ongoing helioseismic investigations of the dynamics of the solar interior have motivated us to develop more sophisticated numerical models of global-scale solar convection. Here we report three- dimensional simulations of compressible, penetrative convection in rotating spherical shells in both laminar and turbulent parameter regimes. The convective structure in the laminar case is dominated by ii banana cells,ˇˇ but the turbulent case is much more complex, with an intricate, rapidly evolving down- —ow network in the upper convection zone and an intermittent, plume-dominated structure in the lower convection zone and overshoot region. Convective patterns generally propagate prograde at low lati- tudes and retrograde at high latitudes relative to the local rotation. The diUerential rotation pro—les show some similarity with helioseismic determinations of the solar rotation but still exhibit signi—cantly more cylindrical alignment. Strong, intermittent, vortical down—ow lanes and plumes play an important dynamical role in turbulent —ow regimes and are responsible for signi—cant diUerences relative to laminar —ows with regard to momentum and energy transport and to the structure of the overshoot region at the base of the convection zone. Subject headings: convectionhydrodynamicsstars: interiorsSun: interiorSun: rotation ¨ turbulence

326 citations

Journal ArticleDOI
TL;DR: In this article, the role of thermal wind balance and tachocline-induced entropy variations in maintaining the solar differential rotation is discussed, and the relative amplitude of the imposed entropy variations is of order 10 � 5, corresponding to a latitudinal temperature variation of about 10 K.
Abstract: Three-dimensional simulations of solar convection in spherical shells are used to evaluate the differential rotation that results as thermal boundary conditions are varied. In some simulations a latitudinal entropy variation is imposed at the lower boundary in order to take into account the coupling between the convective envelope and the radiative interior through thermal wind balance in the tachocline. The issue is whether the baroclinic forcing arising from tachocline-induced entropy variations can break the tendency for numerical simulations of convection to yield cylindrical rotation profiles, unlike the conical profiles deduced from helioseismology. As the amplitude of the imposed variation is increased, cylindrical rotation profiles do give way to more conical profiles that exhibit nearly radial angular velocity contours at midlatitudes. Conical rotation profiles are maintained primarily by the resolved convective heat flux, which transmits entropy variations from the lower boundary into the convective envelope, giving rise to baroclinic forcing. The relative amplitude of the imposed entropy variations is of order 10 � 5 , corresponding to a latitudinal temperature variation of about 10 K. The role of thermal wind balance and tachoclineinduced entropy variations in maintaining the solar differential rotation is discussed. Subject headingg convection — Sun: interior — Sun: rotation

290 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: In this paper, an overall theoretical framework and the observations that motivate it are outlined, outlining the key dynamical processes involved in star formation, including turbulence, magnetic fields, and self-gravity.
Abstract: We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation—turbulence, magnetic fields, and self-gravity— are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.

2,522 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution.
Abstract: We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main sequence evolution to the onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates "on-the-fly" from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.

2,166 citations

Journal ArticleDOI
TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this paper.
Abstract: Understanding the formation of stars in galaxies is central to much of modern astrophysics. However, a quantitative prediction of the star formation rate and the initial distribution of stellar masses remains elusive. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift (known as ambipolar diffusion in astrophysics). Recently, however, both observational and numerical work has begun to suggest that supersonic turbulent flows rather than static magnetic fields control star formation. To some extent, this represents a return to ideas popular before the importance of magnetic fields to the interstellar gas was fully appreciated. This review gives a historical overview of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives. The outline of a new theory relying on control by driven supersonic turbulence is then presented. Numerical models demonstrate that, although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic-scale star formation. It suggests that individual star-forming cores are likely not quasistatic objects, but dynamically collapsing. Accretion onto these objects varies depending on the properties of the surrounding turbulent flow; numerical models agree with observations showing decreasing rates. The initial mass distribution of stars may also be determined by the turbulent flow. Molecular clouds appear to be transient objects forming and dissolving in the larger-scale turbulent flow, or else quickly collapsing into regions of violent star formation. Global star formation in galaxies appears to be controlled by the same balance between gravity and turbulence as small-scale star formation, although modulated by cooling and differential rotation. The dominant driving mechanism in star-forming regions of galaxies appears to be supernovae, while elsewhere coupling of rotation to the gas through magnetic fields or gravity may be important.

1,630 citations