scispace - formally typeset
Search or ask a question
Author

Mark W. Kieran

Bio: Mark W. Kieran is an academic researcher from Harvard University. The author has contributed to research in topics: Glioma & Population. The author has an hindex of 76, co-authored 309 publications receiving 21162 citations. Previous affiliations of Mark W. Kieran include Massachusetts Institute of Technology & Bristol-Myers Squibb.
Topics: Glioma, Population, Angiogenesis, Progeria, Cancer


Papers
More filters
Journal ArticleDOI
07 Sep 1990-Cell
TL;DR: A complementary cDNA coding for KBF1 is isolated and the DNA binding and dimerization domain of the protein is identified, which suggests functional homologies between KBF2 and v-rel and the Drosophila maternal morphogen dorsal.

802 citations

Journal ArticleDOI
David T.W. Jones1, Barbara Hutter1, Natalie Jäger1, Andrey Korshunov2, Andrey Korshunov1, Marcel Kool1, Hans-Jörg Warnatz3, Thomas Zichner, Sally R. Lambert4, Marina Ryzhova5, Dong Anh Khuong Quang6, Adam M. Fontebasso6, Adrian M. Stütz, Sonja Hutter1, Marc Zuckermann1, Dominik Sturm1, Jan Gronych1, Bärbel Lasitschka1, Sabine Schmidt1, Huriye Seker-Cin1, Hendrik Witt1, Hendrik Witt2, Marc Sultan3, Meryem Ralser3, Paul A. Northcott1, Volker Hovestadt1, Sebastian Bender1, Elke Pfaff1, Sebastian Stark1, Damien Faury6, Jeremy Schwartzentruber6, Jacek Majewski6, Ursula D. Weber1, Marc Zapatka1, Benjamin Raeder, Matthias Schlesner1, Catherine L. Worth3, Cynthia C. Bartholomae1, Christof von Kalle1, Charles D. Imbusch1, S. Radomski1, S. Radomski2, Chris Lawerenz1, Peter van Sluis7, Jan Koster7, Richard Volckmann7, Rogier Versteeg7, Hans Lehrach3, Camelia M. Monoranu8, Beate Winkler8, Andreas Unterberg2, Christel Herold-Mende9, Till Milde1, Till Milde2, Andreas E. Kulozik2, Martin Ebinger10, Martin U. Schuhmann10, Yoon Jae Cho11, Scott L. Pomeroy12, Scott L. Pomeroy13, Andreas von Deimling2, Andreas von Deimling1, Olaf Witt1, Olaf Witt2, Michael D. Taylor14, Stephan Wolf1, Matthias A. Karajannis15, Charles G. Eberhart16, Wolfram Scheurlen17, Martin Hasselblatt18, Keith L. Ligon12, Mark W. Kieran12, Jan O. Korbel, Marie-Laure Yaspo3, Benedikt Brors1, Jörg Felsberg19, Guido Reifenberger19, V. Peter Collins4, Nada Jabado20, Nada Jabado6, Roland Eils2, Roland Eils1, Peter Lichter1 
TL;DR: Recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors and new BRAF-activating changes were observed, indicating that pilocytic astrocytoma is predominantly a single-pathway disease.
Abstract: Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

657 citations

Journal ArticleDOI
TL;DR: It is demonstrated that tumor microenvironment associated fibroblasts are a heterogeneous population and thus, the use of αSMA or vimentin as the only markers will not identify all the CAFs.
Abstract: Tumors are unorganized organs that contain many different cell types. In the recent years, many studies have reported that primary tumors contain fibroblasts/myofibroblasts (carcinoma-associated fibroblasts), mesenchymal cells such as pericytes/mural cells and other vascular smooth muscle cells. Several different markers are used routinely to identify carcinoma-associated fibroblasts (CAFs) such as alpha-smooth muscle actin (α-SMA), vimentin, S100A4 protein/fibroblast specific protein-1 (FSP1) and type I collagen. Likewise markers such as platelet derived growth factor receptor-beta (PDGFRβ) and NG2 chondroitin sulfate proteoglycan (NG2) are used to identify mesenchymal cells such as pericytes and other vasculature associated smooth muscle cells. It is still unknown whether these markers overlap with each other or identify a unique population of cells within the tumor microenvironment. Therefore in the present study we utilized two different mouse models of cancer, the Rip1Tag2 mice that develop progressi...

639 citations

Journal ArticleDOI
Marcel Kool1, David T.W. Jones1, Natalie Jäger1, Paul A. Northcott1, Trevor J. Pugh2, Volker Hovestadt1, Rosario M. Piro1, L. Adriana Esparza3, Shirley L. Markant3, Marc Remke, Till Milde4, Franck Bourdeaut5, Marina Ryzhova, Dominik Sturm1, Elke Pfaff1, Sebastian Stark1, Sonja Hutter1, Huriye Seker-Cin1, Pascal Johann1, Sebastian Bender1, Christin Schmidt1, Tobias Rausch6, David Shih, Jüri Reimand7, Laura Sieber1, Andrea Wittmann1, Linda Linke1, Hendrik Witt4, Hendrik Witt1, Ursula D. Weber1, Marc Zapatka1, Rainer König8, Rainer König1, Rameen Beroukhim2, Rameen Beroukhim9, Rameen Beroukhim10, Guillaume Bergthold9, Guillaume Bergthold2, Guillaume Bergthold11, Peter van Sluis, Richard Volckmann, Jan Koster, Rogier Versteeg, Sabine Schmidt1, Stephan Wolf1, Chris Lawerenz1, Cynthia C. Bartholomae1, Christof von Kalle1, Andreas Unterberg1, Christel Herold-Mende1, Silvia Hofer12, Andreas E. Kulozik4, Andreas von Deimling1, Andreas von Deimling13, Wolfram Scheurlen14, Jörg Felsberg15, Guido Reifenberger15, Martin Hasselblatt, John R. Crawford16, John R. Crawford14, Gerald A. Grant17, Nada Jabado18, Arie Perry19, Cynthia Cowdrey19, Sydney Croul, Gelareh Zadeh, Jan O. Korbel6, François Doz20, François Doz5, Olivier Delattre5, Gary D. Bader7, Martin G. McCabe21, V. Peter Collins22, Mark W. Kieran9, Yoon Jae Cho23, Scott L. Pomeroy14, Olaf Witt1, Benedikt Brors1, Michael D. Taylor, Ulrich Schüller24, Andrey Korshunov13, Andrey Korshunov1, Roland Eils1, Robert J. Wechsler-Reya3, Peter Lichter1, Stefan M. Pfister4, Stefan M. Pfister1 
TL;DR: Functional assays in different SHH-MB xenograft models demonstrated that SHh-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant.

610 citations

Journal ArticleDOI
TL;DR: It is demonstrated that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors and provided a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.
Abstract: The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

604 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor and is hoped that it will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.
Abstract: The 2016 World Health Organization Classification of Tumors of the Central Nervous System is both a conceptual and practical advance over its 2007 predecessor. For the first time, the WHO classification of CNS tumors uses molecular parameters in addition to histology to define many tumor entities, thus formulating a concept for how CNS tumor diagnoses should be structured in the molecular era. As such, the 2016 CNS WHO presents major restructuring of the diffuse gliomas, medulloblastomas and other embryonal tumors, and incorporates new entities that are defined by both histology and molecular features, including glioblastoma, IDH-wildtype and glioblastoma, IDH-mutant; diffuse midline glioma, H3 K27M-mutant; RELA fusion-positive ependymoma; medulloblastoma, WNT-activated and medulloblastoma, SHH-activated; and embryonal tumour with multilayered rosettes, C19MC-altered. The 2016 edition has added newly recognized neoplasms, and has deleted some entities, variants and patterns that no longer have diagnostic and/or biological relevance. Other notable changes include the addition of brain invasion as a criterion for atypical meningioma and the introduction of a soft tissue-type grading system for the now combined entity of solitary fibrous tumor / hemangiopericytoma-a departure from the manner by which other CNS tumors are graded. Overall, it is hoped that the 2016 CNS WHO will facilitate clinical, experimental and epidemiological studies that will lead to improvements in the lives of patients with brain tumors.

11,197 citations

Journal ArticleDOI
TL;DR: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control and Prevention and National Cancer Institute, is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the US.
Abstract: The Central Brain Tumor Registry of the United States (CBTRUS), in collaboration with the Centers for Disease Control (CDC) and National Cancer Institute (NCI), is the largest population-based registry focused exclusively on primary brain and other central nervous system (CNS) tumors in the United States (US) and represents the entire US population. This report contains the most up-to-date population-based data on primary brain tumors (malignant and non-malignant) and supersedes all previous CBTRUS reports in terms of completeness and accuracy. All rates (incidence and mortality) are age-adjusted using the 2000 US standard population and presented per 100,000 population. The average annual age-adjusted incidence rate (AAAIR) of all malignant and non-malignant brain and other CNS tumors was 23.79 (Malignant AAAIR=7.08, non-Malignant AAAIR=16.71). This rate was higher in females compared to males (26.31 versus 21.09), Blacks compared to Whites (23.88 versus 23.83), and non-Hispanics compared to Hispanics (24.23 versus 21.48). The most commonly occurring malignant brain and other CNS tumor was glioblastoma (14.5% of all tumors), and the most common non-malignant tumor was meningioma (38.3% of all tumors). Glioblastoma was more common in males, and meningioma was more common in females. In children and adolescents (age 0-19 years), the incidence rate of all primary brain and other CNS tumors was 6.14. An estimated 83,830 new cases of malignant and non-malignant brain and other CNS tumors are expected to be diagnosed in the US in 2020 (24,970 malignant and 58,860 non-malignant). There were 81,246 deaths attributed to malignant brain and other CNS tumors between 2013 and 2017. This represents an average annual mortality rate of 4.42. The 5-year relative survival rate following diagnosis of a malignant brain and other CNS tumor was 23.5% and for a non-malignant brain and other CNS tumor was 82.4%.

9,802 citations

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
TL;DR: Recently, significant advances have been made in elucidating the details of the pathways through which signals are transmitted to the NF-kappa B:I kappa B complex in the cytosol and their implications for the study of NF-Kappa B.
Abstract: ▪ Abstract The transcription factor NF-κB, more than a decade after its discovery, remains an exciting and active area of study. The involvement of NF-κB in the expression of numerous cytokines and adhesion molecules has supported its role as an evolutionarily conserved coordinating element in the organism's response to situations of infection, stress, and injury. Recently, significant advances have been made in elucidating the details of the pathways through which signals are transmitted to the NF-κB:IκB complex in the cytosol. The field now awaits the discovery and characterization of the kinase responsible for the inducible phosphorylation of IκB proteins. Another exciting development has been the demonstration that in certain situations NF-κB acts as an anti-apoptotic protein; therefore, elucidation of the mechanism by which NF-κB protects against cell death is an important goal. Finally, the generation of knockouts of members of the NF-κB/IκB family has allowed the study of the roles of these protein...

5,324 citations

Journal ArticleDOI
TL;DR: The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, severe phase response, and radiation damage.
Abstract: NF-kappa B is a ubiquitous transcription factor. Nevertheless, its properties seem to be most extensively exploited in cells of the immune system. Among these properties are NF-kappa B's rapid posttranslational activation in response to many pathogenic signals, its direct participation in cytoplasmic/nuclear signaling, and its potency to activate transcription of a great variety of genes encoding immunologically relevant proteins. In vertebrates, five distinct DNA binding subunits are currently known which might extensively heterodimerize, thereby forming complexes with distinct transcriptional activity, DNA sequence specificity, and cell type- and cell stage-specific distribution. The activity of DNA binding NF-kappa B dimers is tightly controlled by accessory proteins called I kappa B subunits of which there are also five different species currently known in vertebrates. I kappa B proteins inhibit DNA binding and prevent nuclear uptake of NF-kappa B complexes. An exception is the Bcl-3 protein which in addition can function as a transcription activating subunit in th nucleus. Other I kappa B proteins are rather involved in terminating NF-kappa B's activity in the nucleus. The intracellular events that lead to the inactivation of I kappa B, i.e. the activation of NF-kappa B, are complex. They involve phosphorylation and proteolytic reactions and seem to be controlled by the cells' redox status. Interference with the activation or activity of NF-kappa B may be beneficial in suppressing toxic/septic shock, graft-vs-host reactions, acute inflammatory reactions, acute phase response, and radiation damage. The inhibition of NF-kappa B activation by antioxidants and specific protease inhibitors may provide a pharmacological basis for interfering with these acute processes.

4,708 citations