scispace - formally typeset
Search or ask a question
Author

Marko Nardini

Bio: Marko Nardini is an academic researcher from Durham University. The author has contributed to research in topics: Sensory cue & Perception. The author has an hindex of 26, co-authored 106 publications receiving 2698 citations. Previous affiliations of Marko Nardini include University College London & Birkbeck, University of London.


Papers
More filters
Journal ArticleDOI
TL;DR: In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG, and comparison with the results obtained in the dog model indicates that there is a species difference in the amount of R PE65 required to drive the visual cycle.
Abstract: BackgroundMutations in RPE65 cause Leber’s congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. MethodsWe performed a phase 1–2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. ResultsImprovements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was d...

599 citations

Journal ArticleDOI
TL;DR: The results suggest that development of individual spatial-representational systems precedes development of the capacity to combine these within a common reference frame, and that humans can integrate spatial cues nearly optimally to navigate, but this ability depends on an extended developmental process.

362 citations

Journal ArticleDOI
TL;DR: The findings indicate that core components of adult spatial competence, including parallel egocentric and nonegocentric representations of space, are present as early as 3 years, and are supplemented by later-developing object-referenced representations.

170 citations

Journal ArticleDOI
TL;DR: The lack of a clear association of disruption of retinal structure or function in ACHM with age suggests that the window of opportunity for intervention by gene therapy is wider in some individuals than previously indicated.

142 citations

Journal ArticleDOI
TL;DR: It is shown that uncertainty reduction by sensory integration does not emerge until 12 y even within the single modality of vision, in judgments of surface slant based on stereoscopic and texture information, and that the developing visual system may be optimized for speed and for detecting sensory conflicts.
Abstract: Human adults can go beyond the limits of individual sensory systems’ resolutions by integrating multiple estimates (e.g., vision and touch) to reduce uncertainty. Little is known about how this ability develops. Although some multisensory abilities are present from early infancy, it is not until age ≥8 y that children use multiple modalities to reduce sensory uncertainty. Here we show that uncertainty reduction by sensory integration does not emerge until 12 y even within the single modality of vision, in judgments of surface slant based on stereoscopic and texture information. However, adults’ integration of sensory information comes at a cost of losing access to the individual estimates that feed into the integrated percept (“sensory fusion”). By contrast, 6-y-olds do not experience fusion, but are able to keep stereo and texture information separate. This ability enables them to outperform adults when discriminating stimuli in which these information sources conflict. Further, unlike adults, 6-y-olds show speed gains consistent with following the fastest-available single cue. Therefore, whereas the mature visual system is optimized for reducing sensory uncertainty, the developing visual system may be optimized for speed and for detecting sensory conflicts. Such conflicts could provide the error signals needed to learn the relationships between sensory information sources and to recalibrate them while the body is growing.

136 citations


Cited by
More filters
Journal ArticleDOI
15 Oct 2015-Nature
TL;DR: Technology for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.
Abstract: Recent clinical trials of gene therapy have shown remarkable therapeutic benefits and an excellent safety record. They provide evidence for the long-sought promise of gene therapy to deliver 'cures' for some otherwise terminal or severely disabling conditions. Behind these advances lie improved vector designs that enable the safe delivery of therapeutic genes to specific cells. Technologies for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.

918 citations

01 Jul 2005

852 citations

Journal ArticleDOI
12 Jan 2018-Science
TL;DR: The pioneering work that led the gene therapy field to its current state is reviewed, gene-editing technologies that are expected to play a major role in the field's future are described, and practical challenges in getting these therapies to patients who need them are discussed.
Abstract: BACKGROUND Nearly five decades ago, visionary scientists hypothesized that genetic modification by exogenous DNA might be an effective treatment for inherited human diseases. This “gene therapy” strategy offered the theoretical advantage that a durable and possibly curative clinical benefit would be achieved by a single treatment. Although the journey from concept to clinical application has been long and tortuous, gene therapy is now bringing new treatment options to multiple fields of medicine. We review critical discoveries leading to the development of successful gene therapies, focusing on direct in vivo administration of viral vectors, adoptive transfer of genetically engineered T cells or hematopoietic stem cells, and emerging genome editing technologies. ADVANCES The development of gene delivery vectors such as replication-defective retro viruses and adeno-associated virus (AAV), coupled with encouraging results in preclinical disease models, led to the initiation of clinical trials in the early 1990s. Unfortunately, these early trials exposed serious therapy-related toxicities, including inflammatory responses to the vectors and malignancies caused by vector-mediated insertional activation of proto-oncogenes. These setbacks fueled more basic research in virology, immunology, cell biology, model development, and target disease, which ultimately led to successful clinical translation of gene therapies in the 2000s. Lentiviral vectors improved efficiency of gene transfer to nondividing cells. In early-phase clinical trials, these safer and more efficient vectors were used for transduction of autologous hematopoietic stem cells, leading to clinical benefit in patients with immunodeficiencies, hemoglobinopathies, and metabolic and storage disorders. T cells engineered to express CD19-specific chimeric antigen receptors were shown to have potent antitumor activity in patients with lymphoid malignancies. In vivo delivery of therapeutic AAV vectors to the retina, liver, and nervous system resulted in clinical improvement in patients with congenital blindness, hemophilia B, and spinal muscular atrophy, respectively. In the United States, Food and Drug Administration (FDA) approvals of the first gene therapy products occurred in 2017, including chimeric antigen receptor (CAR)–T cells to treat B cell malignancies and AAV vectors for in vivo treatment of congenital blindness. Promising clinical trial results in neuromuscular diseases and hemophilia will likely result in additional approvals in the near future. In recent years, genome editing technologies have been developed that are based on engineered or bacterial nucleases. In contrast to viral vectors, which can mediate only gene addition, genome editing approaches offer a precise scalpel for gene addition, gene ablation, and gene “correction.” Genome editing can be performed on cells ex vivo or the editing machinery can be delivered in vivo to effect in situ genome editing. Translation of these technologies to patient care is in its infancy in comparison to viral gene addition therapies, but multiple clinical genome editing trials are expected to open over the next decade. OUTLOOK Building on decades of scientific, clinical, and manufacturing advances, gene therapies have begun to improve the lives of patients with cancer and a variety of inherited genetic diseases. Partnerships with biotechnology and pharmaceutical companies with expertise in manufacturing and scale-up will be required for these therapies to have a broad impact on human disease. Many challenges remain, including understanding and preventing genotoxicity from integrating vectors or off-target genome editing, improving gene transfer or editing efficiency to levels necessary for treatment of many target diseases, preventing immune responses that limit in vivo administration of vectors or genome editing complexes, and overcoming manufacturing and regulatory hurdles. Importantly, a societal consensus must be reached on the ethics of germline genome editing in light of rapid scientific advances that have made this a real, rather than hypothetical, issue. Finally, payers and gene therapy clinicians and companies will need to work together to design and test new payment models to facilitate delivery of expensive but potentially curative therapies to patients in need. The ability of gene therapies to provide durable benefits to human health, exemplified by the scientific advances and clinical successes over the past several years, justifies continued optimism and increasing efforts toward making these therapies part of our standard treatment armamentarium for human disease.

843 citations