scispace - formally typeset
Search or ask a question
Author

Markus Braune

Bio: Markus Braune is an academic researcher from Fritz Haber Institute of the Max Planck Society. The author has contributed to research in topics: Electron & Photon. The author has an hindex of 3, co-authored 5 publications receiving 258 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment, and identify a hitherto unrecognized extra source of lowenergy electrons produced by a non-local autoionization process called intermolecular coulombic decay (ICD).
Abstract: Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as intermolecular Coulombic decay. Low-energy electrons are the most abundant product of ionizing radiation in condensed matter. The origin of these electrons is most commonly understood to be secondary electrons1 ionized from core or valence levels by incident radiation and slowed by multiple inelastic scattering events. Here, we investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment. We identify a hitherto unrecognized extra source of low-energy electrons produced by a non-local autoionization process called intermolecular coulombic decay2 (ICD). The unequivocal signature of this process is observed in coincidence measurements of low-energy electrons and photoelectrons generated from inner-valence states with vacuum-ultraviolet light. As ICD is expected to take place universally in weakly bound aggregates containing light atoms between carbon and neon in the periodic table2,3, these results could have implications for our understanding of ionization damage in living tissues.

233 citations

Journal ArticleDOI
TL;DR: It is shown that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.
Abstract: In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections $\ensuremath{\sigma}$, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

29 citations

Journal ArticleDOI
TL;DR: In this paper, an angle resolved study of photoelectrons emitted from ions of the noble gases neon, argon and krypton by means of time-of-flight spectroscopy is presented.
Abstract: We present an angle resolved study of photoelectrons emitted from ions of the noble gases neon, argon and krypton by means of time-of-flight spectroscopy. The ionic targets are generated in a sequential two-photon process induced by the free-electron laser FLASH. Values of the anisotropy parameters β2 and β4 are derived from electron angular distribution measurements in the photon energy range from 38 to 91 eV and compared with recent theoretical calculations.

22 citations

Journal ArticleDOI
01 Nov 2009
TL;DR: In this paper, angle resolved electron Time-of-Flight spectroscopy was used to analyze multi-photon ionization for all rare gases by radiation from the Free Electron Laser FLASH in Hamburg.
Abstract: Multi-photon ionization for all rare gases by radiation from the Free Electron Laser FLASH in Hamburg is reported. The ionization events are analyzed by angle resolved electron Time-of-Flight spectroscopy. Photoelectrons belonging to different coupling schemes of the final ionic state are energetically resolved and their angular distributions could be determined separately for all three final ionic states for the first time. The behavior of the multi-photon specific term β4 shows different values for different final ionic states pointing to coupling scheme dependent anisotropic final state interactions.

1 citations

Journal ArticleDOI
01 Nov 2009
Abstract: Cohen and Fano derived in their famous paper of 1966 a formula which describes the partial cross section oscillations of the ionization probability of mirror symmetric systems such as diatomic homonuclear molecules but also of larger system such as fullerenes. The general prediction of oscillating partial cross sections has been proven since that for different excitation schemes like ion, electron and photon impact. The specific threshold behavior of the Cohen-Fano formula, however, has been experimentally never proven. We present new measurements on this intriguing problem for N2 and C60.

Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films is summarized and the potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is discussed.
Abstract: Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.

326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase of the ECSBM using a single chiral Monte Carlo method, developed at the University of California, Berkeley, in 1998 and refined at the behest of the manufacturer.
Abstract: s; Proceeding of IX ECSBM, Prague, Czech Republic, 2001. (176) Abouaf, R.; Pommier, J.; Dunet, H. Int. J. Mass Spectrom. 2003, 226, 397. (177) Denifl, S.; Ptasin ́ska, S.; Cingel, M.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2003, 377, 74. (178) Gohlke, S.; Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2003, 380, 595. (179) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Rev. Lett. 2004, 92, 168103. (180) Ptasin ́ska, S.; Denifl, S.; Grill, V.; Mar̈k, T. D.; Scheier, P.; Gohlke, S.; Huels, M. A.; Illenberger, E. Angew. Chem., Int. Ed. 2005, 44, 1657. (181) Aflatooni, K.; Gallup, G. A.; Burrow, P. D. J. Phys. Chem. A 1998, 102, 6205. (182) Burrow, P. D.; Gallup, G. A.; Scheer, A. M.; Denifl, S.; Ptasinska, S.; Mar̈k, T. D.; Scheier, P. J. Chem. Phys. 2006, 124, 124310. (183) Aflatooni, K.; Scheer, A. M.; Burrow, P. D. Chem. Phys. Lett. 2005, 408, 426. (184) Naaman, R.; Sanche, L. Chem. Rev. 2007, 107, 1553. (185) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 19013. (186) Ptasin ́ska, S.; Denifl, S.; Mroź, B.; Probst, M.; Grill, V.; Illenberger, E.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2005, 123, 124302. (187) Li, Z.; Cloutier, P.; Sanche, L.; Wagner, J. R. J. Phys. Chem. B 2011, 115, 13668. (188) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 5472. (189) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Illenberger, E.; Mar̈k, T. D. Angew. Chem., Int. Ed. 2005, 44, 6941. (190) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Am. Chem. Soc. 2004, 126, 1002. (191) Huels, M. A.; Parenteau, L.; Michaud, M.; Sanche, L. Phys. Rev. A 1995, 51, 337. (192) Abdoul-Carime, H.; Cloutier, P.; Sanche, L. Radiat. Res. 2001, 155, 625. (193) Baccarelli, I.; Bald, I.; Gianturco, F. A.; Illenberger, E.; Kopyra, J. Phys. Rep. 2011, 508, 1. (194) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2004, 120, 8505. (195) Antic, D.; Parenteau, L.; Lepage, M.; Sanche, L. J. Phys. Chem. 1999, 103, 6611. (196) Antic, D.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2000, 104, 4711. (197) Huels, M. A.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2004, 108, 16303. (198) Pan, X.; Sanche, L. Chem. Phys. Lett. 2006, 421, 404. (199) Pan, X.; Sanche, L. Phys. Rev. Lett. 2005, 94, 198104. (200) Sulzer, P.; Mauracher, A.; Denifl, S.; Zappa, F.; Ptasin ́ska, S.; Beikircher, M.; Bacher, A.; Wendt, N.; Aleem, A.; Rondino, F.; Matejcik, S.; Probst, M.; Mar̈k, T. D.; Scheier, P. Anal. Chem. 2007, 79, 6585. (201) Gu, J.; Xie, Y.; Schaefer, H. F. Chem.Eur. J. 2010, 16, 5089. (202) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Sanche, L.; Wagner, J. R. J. Am. Chem. Soc. 2005, 127, 16592. (203) Zheng, Y.; Wagner, J. R.; Sanche, L. Phys. Rev. Lett. 2006, 96, 208101. (204) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Chem. Phys. 2006, 124, 9. (205) Huels, M.; Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 4467. (206) Boudaïffa, B.; Hunting, D. J.; Cloutier, P.; Huels, M. A.; Sanche, L. Int. J. Radiat. Biol. 2000, 76, 1209. (207) Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Huels, M. A.; Sanche, L. Med. Sci 2000, 16, 1281. (208) Martin, F.; Burrow, P. D.; Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. Phys. Rev. Lett. 2004, 93, 068101. (209) Panajotovic, R.; Martin, F.; Cloutier, P.; Hunting, D. J.; Sanche, L. Radiat. Res. 2006, 165, 452. (210) Li, X.; Sevilla, M. D.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 13668. (211) Simons, J. Acc. Chem. Res. 2006, 39, 772. (212) Bao, X.; Wang, J.; Gu, J.; Leszczynski, J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5658. (213) Caron, L.; Sanche, L. Phys. Rev. A: At., Mol. Opt. Phys. 2004, 70, 032719. (214) Caron, L. G.; Sanche, L. In Low-energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čaŕsky, P., Čurík, R., Eds.; CRC Press (Taylor and Francis Group): Boca Raton, FL, 2012; pp 161− 230. (215) Lin, S. D. Radiat. Res. 1974, 59, 521. (216) Abdoul-Carime, H.; Sanche, L. Radiat. Res. 2003, 160, 86. (217) Abdoul-Carime, H.; Sanche, L. J. Phys. Chem. B 2004, 108, 457. (218) Abdoul-Carime, H.; Cecchini, S.; Sanche, L. Radiat. Res. 2002, 158, 23. (219) Ptasin ́ska, S.; Denifl, S.; Candor, P.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2005, 403, 107. (220) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Chem. Phys. Lett. 2005, 402, 497. (221) Gohlke, S.; Rosa, A.; Illenberger, E.; Brüning, F.; Huels, M. A. J. Chem. Phys. 2002, 116, 10164. (222) Ptasin ́ska, S.; Denifl, S.; Abedi, A.; Scheier, P.; Mar̈k, T. D. Anal. Bioanal. Chem. 2003, 377, 1115. (223) Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2004, 397, 309. (224) Sulzer, P.; Alizadeh, E.; Mauracher, A.; Scheier, P.; Mar̈k, T. D. Int. J. Mass. Spectrom. 2008, 277, 274. (225) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Chem. Chem. Phys. 2004, 6, 161. (226) Alizadeh, E. Dissociative Electron Attachment to Biomolecules. Ph.D Thesis, University of Innsbruck, Innsbruck, Austria, August 2009. (227) Alizadeh, E.; Gschliesser, D.; Bartl, P.; Edtbauer, A.; Vizcaino, V.; Mauracher, A.; Probst, M.; Mar̈k, T. D.; Ptasin ́ska, S.; Mason, N. J.; Denifl, S.; Scheier, P. J. Chem. Phys. 2011, 134, 054305. (228) Vasil’ev, Y. V.; Figard, B. J.; Barofsky, D. F.; Deinzer, M. L. J. Am. Chem. Soc. 2007, 268, 106. (229) Cloutier, P.; Sicard-Roselli, C.; Escher, E.; Sanche, L. J. Phys. Chem. B 2007, 111, 1620. (230) Ptasin ́ska, S.; Li, Z.; Mason, N. J.; Sanche, L. Phys. Chem. Chem. Phys. 2010, 12, 9367. (231) Wang, J.; Gu, J.; Leszczynski, J. Chem. Phys. Lett. 2007, 442, 124. (232) Ptasin ́ska, S.; Sanche, L. Phys. Rev. E 2007, 75, 031915. (233) Falk, M.; Hartman, K. A.; Lord, R. C. J. Am. Chem. Soc. 1963, 85, 387. (234) Orlando, T. M.; Oh, D.; Chen, Y.; Aleksandrov, A. B. J. Chem. Phys. 2008, 128, 195102. (235) Dumont, A.; Zheng, Y.; Hunting, D.; Sanche, L. J. Chem. Phys. 2010, 132, 045102. (236) Solomun, T.; Skalicky, T. Chem. Phys. Lett. 2008, 453, 101. (237) Lett, J. T.; Alexander, P. Radiat. Res. 1961, 15, 159. Chemical Reviews Review dx.doi.org/10.1021/cr300063r | Chem. Rev. XXXX, XXX, XXX−XXX X (238) Neary, G. J.; Simpson-Gildemeister, V. F. W.; Peacocke, A. R. Int. J. Radiat. Biol. 1970, 18, 25. (239) Hearst, J. E.; Vinogard, J. Proc. Natl. Acad. Sci. U.S.A. 1961, 47, 825. (240) Saenger, W. Principles of Nucleic Acid Structure; SpringerVerlag: New York, NY, 1984. (241) Jeffrey, G.; Saenger, W. Hydration Bonding in Biological Structures; Springer-Verlag: New York, NY, 1991. (242) Tao, N. J.; Lindsay, S. M.; Rupprecht, A. Biopolymers 1989, 28, 1019. (243) Swarts, S.; Sevilla, M. D.; Becker, D.; Tokar, C.; Wheeler, K. Radiat. Res. 1992, 129, 333. (244) Brun, É.; Cloutier, P.; Sicard-Roselli, C.; Fromm, M.; Sanche, L. J. Phys. Chem. B 2009, 113, 10008. (245) Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2005, 109, 4796. (246) de Lara, C. M.; Jenner, T. J.; Townsend, K. M. S.; Marsden, S. J.; O’Neill, P. Radiat. Res. 1995, 144, 43. (247) Alizadeh, E.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2011, 115, 4796. (248) Samuni, A.; Czapski, G. Radiat. Res. 1978, 76, 624. (249) Roots, R.; Chatterjee, A.; Blakely, E.; Chang, P.; Smith, K.; Tobias, C. Radiat. Res. 1982, 92, 245. (250) Ewing, D.; Walton, H. L.; Guilfoil, D. S.; Ohm, M. B. Int. J. Radiat. Biol. 1991, 59, 717. (251) Alizadeh, E.; Sanche, L. Radiat. Phys. Chem. 2012, 81, 33. (252) Nikjoo, H.; Lindborg, L. Phys. Med. Biol. 2010, 55, R65. (253) Alizadeh, E.; Sanche, L. J. Phys. Chem. B 2011, 115, 14852. (254) Devita Jr, V. T.; Hellman, S.; Resenberg, S. A. Cancer: Principles and Practice of Oncology; Lippincott Williams and Wilkins: New York, NY, 2001. (255) Saif, M. W.; Diaso, R. B. In Chemoradiation in Cancer Therapy; Choy, H., Ed.; Humana Press: Totowa, NJ, 2003; pp 23−44. (256) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. (257) Lippard, S. J. Pure Appl. Chem. 1987, 59, 731. (258) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Phys. Rev. Lett. 2008, 100, 198101. (259) Rezaee, M.; Hunting, D. J.; Sanche, L. Results to be published. (260) Rezaee, M.; Alizadeh, E.; Hunting, D. J.; Sanche, L. Bioinorg. Chem. Appl. 2011, 2012, 1. (261) Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. Nat. Clin. Pract. Oncol. 2007, 4, 86. (262) Zimbrick, J. D.; Sukrochana, A.; Richmond, R. C. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 1351. (263) Lelieveld, P.; Scoles, M. A.; Brown, J. M.; Kallman, R. F. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 111. (264) Sanche, L. Chem. Phys. Lett. 2009, 474, 1 (and references therein). (265) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Radiat. Res. 2008, 169, 19. (266) Heb́ert, E. M.; debouttier̀e, P. J.; Lepage, M.; Sanche, L.; Hunting, D. J. Int. J. Radiat. Biol. 2010, 86, 692. (267) Herold, D. M.; Das, I. J.; Stobbe, C. C.; Iyer, R. V.; Chapman, J. D. Int. J. Radiat. Biol. 2000, 76, 1357. (268) Whyman, R. Gold Bull. 1996, 29, 11. (269) Chen, W.; Zhang, J. J. Nanosci. Nanotechnol. 2006, 6, 1159. (270) Anshup, A.; Venkataraman, J. S.; Subramaniam, C.; Kumar, R. R.; Priya, S.; Kumar, T. R. S.; Omkumar, R. V.; John, A.; Pradeep, T. Langmuir 2005, 21, 11562. (271) Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Chem. Commun. 2004, 17, 1978. (272) Brun, E.; Duchambon, P.; Blouquit, Y.; Keller, G.; Sanche, L.; Sicard-Roselli, C. Radiat. Phys. Chem. 2009, 78, 177. (273) Foley, E. A.; Carter, J. D.; Shan, F.; Guo, T. Chem. Commun. 2005, 25, 3192. (274) Carter, J. D.; Cheng, N. N.; Qu, Y.; Suarez, G. D.; Guo, T. J. Phys. Chem. B 2007, 111, 11622. (275) Butterworth, K. T.; Wyer, J. A.; Brennan-Fournet, M.; Latimer, C. J.; Shah, M. B.; Currell, F. J.; Hirst, D. G. Radiat. Res. 2008, 170, 381. (276) Chang, M.; Shiau, A.; Chen, Y.; Chang, C.; Chen, H.; Wu, C. Cancer Sci. 2008, 99, 1479. (277) Xiao, F.; Zheng, Z.; Cloutier, P.; He, Y.; Hunting, D. J.; Sanche, L. Nanotechnology 2011, 22, 465101. (278) Zheng, Y.; Sanche, L. Radiat. Res. 2009, 172, 114. (279) German, E. D.;

282 citations

Journal ArticleDOI
TL;DR: In this article, the major findings which have been consolidated from a broad variety of existing experiments and, at the same time, the main computational approaches which describe the extent of molecular damage following the initial electron attachment process are presented.

263 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the direct observation of an ultrafast transfer of energy across the hydrogen bridge in (H2O)2 (a so-called water dimer) leading to an ejection of a low-energy electron from the molecular neighbour of the initially excited molecule.
Abstract: Analysis of the electrons ionized from water dimers suggests that the energy absorbed by one molecule is rapidly transmitted to the second molecule from which the electron is ejected. This process, referred to as intermolecular Coulombic decay, is a qualitatively different source of low-energy electrons to conventional direct ionization processes. At the transition from the gas to the liquid phase of water, a wealth of new phenomena emerge, which are absent for isolated H2O molecules. Many of those are important for the existence of life, for astrophysics and atmospheric science. In particular, the response to electronic excitation changes completely as more degrees of freedom become available. Here we report the direct observation of an ultrafast transfer of energy across the hydrogen bridge in (H2O)2 (a so-called water dimer). This intermolecular coulombic decay leads to an ejection of a low-energy electron from the molecular neighbour of the initially excited molecule. We observe that this decay is faster than the proton transfer that is usually a prominent pathway in the case of electronic excitation of small water clusters and leads to dissociation of the water dimer into two H2O+ ions. As electrons of low energy (∼0.7–20 eV) have recently been found to efficiently break-up DNA constituents1,2, the observed decay channel might contribute as a source of electrons that can cause radiation damage in biological matter.

241 citations