scispace - formally typeset
Search or ask a question
Author

Markus Münzenberg

Other affiliations: University of Göttingen
Bio: Markus Münzenberg is an academic researcher from University of Greifswald. The author has contributed to research in topics: Magnetization & Magnetization dynamics. The author has an hindex of 37, co-authored 155 publications receiving 6049 citations. Previous affiliations of Markus Münzenberg include University of Göttingen.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the functionalities of spinwave devices, concepts for spin-wave based computing and magnonic crystals is presented. But the focus of this review is on the control over the interplay between localization and delocalization of the spinwave modes using femtosecond lasers.
Abstract: Novel material properties can be realized by designing waves' dispersion relations in artificial crystals. The crystal's structural length scales may range from nano- (light) up to centimeters (sound waves). Because of their emergent properties these materials are called metamaterials. Different to photonics, where the dielectric constant dominantly determines the index of refraction, in a ferromagnet the spin-wave index of refraction can be dramatically changed already by the magnetization direction. This allows a different flexibility in realizing dynamic wave guides or spin-wave switches. The present review will give an introduction into the novel functionalities of spin-wave devices, concepts for spin-wave based computing and magnonic crystals. The parameters of the magnetic metamaterials are adjusted to the spin-wave k-vector such that the magnonic band structure is designed. However, already the elementary building block of an antidot lattice, the singular hole, owns a strongly varying internal potential determined by its magnetic dipole field and a localization of spin-wave modes. Photo-magnonics reveal a way to investigate the control over the interplay between localization and delocalization of the spin-wave modes using femtosecond lasers, which is a major focus of this review. We will discuss the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow to gradually turn on and manipulate spin-wave interactions in spin-wave based devices in the future.

607 citations

Journal ArticleDOI
TL;DR: In this paper, a review of spin-wave properties and properties is presented, where the crucial parameters to realize free Bloch states and how, by contrast, a controlled localization might allow us to gradually turn on and manipulate spinwave interactions in spinwave based devices in the future.

604 citations

Journal ArticleDOI
TL;DR: In this article, a W/CoFeB/Pt trilayer was used to generate a 1.30 THz range of trilayers from photo-induced spin currents, the inverse spin Hall effect and a broadband Fabry-Perot resonance.
Abstract: Ultrashort pulses covering the 1–30 THz range are generated from a W/CoFeB/Pt trilayer and originate from photoinduced spin currents, the inverse spin Hall effect and a broadband Fabry–Perot resonance. The resultant peak fields are several 100 kV cm–1.

582 citations

Journal ArticleDOI
TL;DR: It is demonstrated, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.
Abstract: In spin-based electronics, information is encoded by the spin state of electron bunches Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters

485 citations

Journal ArticleDOI
24 Jan 2013-Nature
TL;DR: The findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.
Abstract: When molecules of a phenalenyl derivative, which has no net spin, are deposited on a ferromagnet, they develop into a magnetic supramolecular layer with spin-filtering properties; this could be the basis for a new approach to building molecular magnetic devices. Various types of molecular magnets carrying high localized spin have been studied as potential devices for information processing and storage, but it remains a considerable challenge to electronically couple to these spin centres. Moodera et al. have designed a phenalenyl derivative, essentially a graphene fragment, with the potential to act as an interface for the exchange of magnetic spin information in molecular spintronic devices. The graphene fragment has no net spin itself, but when deposited as a layer on a ferromagnet it transforms to produce a supramolecular magnetic film. The resulting nanoscale magnetic molecules, or memory 'bits', can be manipulated by external stimuli, and the resulting device exhibits an unexpectedly large magnetoresistance of 20% near room temperature. The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices1,2, opening avenues for developing multifunctional molecular spintronics3. Such ideas have been researched extensively, using single-molecule magnets4,5 and molecules with a metal ion6 or nitrogen vacancy7 as localized spin-carrying centres for storage and for realizing logic operations8. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task9. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl10, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli11,12 (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets13. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

373 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents as discussed by the authors and the associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not.
Abstract: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.

2,178 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the progress in this field of laser manipulation of magnetic order in a systematic way and show that the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale.
Abstract: The interaction of subpicosecond laser pulses with magnetically ordered materials has developed into a fascinating research topic in modern magnetism. From the discovery of subpicosecond demagnetization over a decade ago to the recent demonstration of magnetization reversal by a single 40 fs laser pulse, the manipulation of magnetic order by ultrashort laser pulses has become a fundamentally challenging topic with a potentially high impact for future spintronics, data storage and manipulation, and quantum computation. Understanding the underlying mechanisms implies understanding the interaction of photons with charges, spins, and lattice, and the angular momentum transfer between them. This paper will review the progress in this field of laser manipulation of magnetic order in a systematic way. Starting with a historical introduction, the interaction of light with magnetically ordered matter is discussed. By investigating metals, semiconductors, and dielectrics, the roles of nearly free electrons, charge redistributions, and spin-orbit and spin-lattice interactions can partly be separated, and effects due to heating can be distinguished from those that are not. It will be shown that there is a fundamental distinction between processes that involve the actual absorption of photons and those that do not. It turns out that for the latter, the polarization of light plays an essential role in the manipulation of the magnetic moments at the femtosecond time scale. Thus, circularly and linearly polarized pulses are shown to act as strong transient magnetic field pulses originating from the nonabsorptive inverse Faraday and inverse Cotton-Mouton effects, respectively. The recent progress in the understanding of magneto-optical effects on the femtosecond time scale together with the mentioned inverse, optomagnetic effects promises a bright future for this field of ultrafast optical manipulation of magnetic order or femtomagnetism.

1,449 citations

Journal ArticleDOI
TL;DR: A review of the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials can be found in this article, where the authors discuss some of the remaining bottlenecks and suggest possible avenues for future research.
Abstract: Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed Antiferromagnetic spintronics started out with studies on spin transfer, and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics Central to these endeavors are the need for predictive models, relevant disruptive materials and new experimental designs This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials It also details some of the remaining bottlenecks and suggests possible avenues for future research

1,442 citations

Journal ArticleDOI
TL;DR: A brief overview of the state of the art of spin caloritronics can be found in this article, where the authors describe the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).
Abstract: This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa)

1,320 citations