scispace - formally typeset
Search or ask a question
Author

Markus Plankl

Bio: Markus Plankl is an academic researcher from University of Regensburg. The author has contributed to research in topics: Terahertz radiation & Near-field scanning optical microscope. The author has an hindex of 6, co-authored 26 publications receiving 466 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate ultrabroadband time-resolved terahertz spectroscopy on a single InAs nanowire with 10nm spatial resolution and sub-100 fs time resolution.
Abstract: The authors demonstrate ultrabroadband time-resolved THz spectroscopy on a single InAs nanowire with 10 nm spatial resolution and sub-100 fs time resolution. Phase-locked ultrashort pulses in the rich terahertz spectral range1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 have provided key insights into phenomena as diverse as quantum confinement7, first-order phase transitions8,12, high-temperature superconductivity11 and carrier transport in nanomaterials1,6,13,14,15. Ultrabroadband electro-optic sampling of few-cycle field transients1 can even reveal novel dynamics that occur faster than a single oscillation cycle of light4,8,10. However, conventional terahertz spectroscopy is intrinsically restricted to ensemble measurements by the diffraction limit. As a result, it measures dielectric functions averaged over the size, structure, orientation and density of nanoparticles, nanocrystals or nanodomains. Here, we extend ultrabroadband time-resolved terahertz spectroscopy to the sub-nanoparticle scale (10 nm) by combining sub-cycle, field-resolved detection (10 fs) with scattering-type near-field scanning optical microscopy (s-NSOM)16,17,18,19,20,21,22,23,24,25,26. We trace the time-dependent dielectric function at the surface of a single photoexcited InAs nanowire in all three spatial dimensions and reveal the ultrafast (<50 fs) formation of a local carrier depletion layer.

222 citations

Journal ArticleDOI
TL;DR: Black phosphorus is introduced as a promising new material in surface polaritonics that features key advantages for ultrafast switching, the excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultra fast nanophotonic devices.
Abstract: Surface phonons of SiO2 can couple with photogenerated plasmon polaritons in black phosphorous to make coherent transient hybrid modes with constant energy and momentum The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement1,2,3,4,5 and tailored nanophotonics6,7,8. Graphene9,10 and its heterostructures11,12,13,14 have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus15,16,17,18,19 as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron–hole pairs by ultrashort near-infrared pulses. Here, we design a SiO2/black phosphorus/SiO2 heterostructure in which the surface phonon modes of the SiO2 layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO2, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron–hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∼50 fs and disappears within 5 ps, as the electron–hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.

178 citations

Journal ArticleDOI
TL;DR: A previously unseen correlation between the local steady-state switching susceptibility and the local ultrafast response to below-threshold photoexcitation is revealed, suggesting that it may be possible to tailor the local photoresponse of VO2 using strain and thereby realize new types of ultrafast nano-optical devices.
Abstract: Long regarded as a model system for studying insulator-to-metal phase transitions, the correlated electron material vanadium dioxide (VO2) is now finding novel uses in device applications. Two of its most appealing aspects are its accessible transition temperature (∼341 K) and its rich phase diagram. Strain can be used to selectively stabilize different VO2 insulating phases by tuning the competition between electron and lattice degrees of freedom. It can even break the mesoscopic spatial symmetry of the transition, leading to a quasiperiodic ordering of insulating and metallic nanodomains. Nanostructuring of strained VO2 could potentially yield unique components for future devices. However, the most spectacular property of VO2—its ultrafast transition—has not yet been studied on the length scale of its phase heterogeneity. Here, we use ultrafast near-field microscopy in the mid-infrared to study individual, strained VO2 nanobeams on the 10 nm scale. We reveal a previously unseen correlation between the l...

71 citations

Journal ArticleDOI
TL;DR: This work uses near-field microscopy in the mid-infrared spectral range to probe the local surface properties of custom-tailored TI structures with nanometer precision and retrieves the local dielectric function without assuming any model for the spectral response.
Abstract: Three-dimensional topological insulators (TIs) have attracted tremendous interest for their possibility to host massless Dirac Fermions in topologically protected surface states (TSSs), which may enable new kinds of high-speed electronics. However, recent reports have outlined the importance of band bending effects within these materials, which results in an additional two-dimensional electron gas (2DEG) with finite mass at the surface. TI surfaces are also known to be highly inhomogeneous on the nanoscale, which is masked in conventional far-field studies. Here, we use near-field microscopy in the mid-infrared spectral range to probe the local surface properties of custom-tailored (Bi0.5Sb0.5)2Te3 structures with nanometer precision in all three spatial dimensions. Applying nanotomography and nanospectroscopy, we reveal a few-nanometer-thick layer of high surface conductivity and retrieve its local dielectric function without assuming any model for the spectral response. This allows us to directly distinguish between different types of surface states. An intersubband transition within the massive 2DEG formed by quantum confinement in the bent conduction band manifests itself as a sharp, surface-bound, Lorentzian-shaped resonance. An additional broadband background in the imaginary part of the dielectric function may be caused by the TSS. Tracing the intersubband resonance with nanometer spatial precision, we observe changes of its frequency, likely originating from local variations of doping or/and the mixing ratio between Bi and Sb. Our results highlight the importance of studying the surfaces of these novel materials on the nanoscale to directly access the local optical and electronic properties via the dielectric function.

53 citations

Journal ArticleDOI
TL;DR: In this article, an approach based on terahertz near-field microscopy was proposed to perform ultrafast nano-videography of tunnelling processes even in insulators.
Abstract: Tunnelling is one of the most fundamental manifestations of quantum mechanics. The recent advent of lightwave-driven scanning tunnelling microscopy has revolutionized ultrafast nanoscience by directly resolving electron tunnelling in electrically conducting samples on the relevant ultrashort length- and timescales. Here, we introduce a complementary approach based on terahertz near-field microscopy to perform ultrafast nano-videography of tunnelling processes even in insulators. The central idea is to probe the evolution of the local polarizability of electron–hole pairs with evanescent terahertz fields, which we detect with subcycle temporal resolution. In a proof of concept, we resolve femtosecond interlayer transport in van der Waals heterobilayers and reveal pronounced variations of the local formation and annihilation of interlayer excitons on deeply subwavelength, nanometre scales. Such contact-free nanoscopy of tunnelling-induced dynamics should be universally applicable to conducting and non-conducting samples and reveal how ultrafast transport processes shape functionalities in a wide range of condensed matter systems. Subcycle nano-videography of charge-transfer dynamics in WSe2/WS2 heterostructures is obtained by using a terahertz near-field microscopy. The central idea is to probe the local polarizability of electron–hole pairs with evanescent terahertz fields.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations

Journal ArticleDOI
TL;DR: This Article exploits near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN), and finds unprecedentedly low plasmon damping combined with strong field confinement and confirms the high uniformity of this plAsmonic medium.
Abstract: Graphene plasmons were predicted to possess ultra-strong field confinement and very low damping at the same time, enabling new classes of devices for deep subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. While all of these great prospects require low damping, thus far strong plasmon damping was observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this letter we exploit near-field microscopy to image propagating plasmons in high quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine dispersion and particularly plasmon damping in real space. We find unprecedented low plasmon damping combined with strong field confinement, and identify the main damping channels as intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key for the development of graphene nano-photonic and nano-optoelectronic devices.

679 citations

Journal ArticleDOI
TL;DR: Emerging strategies for selectively perturbing microscopic interaction parameters are described, which can be used to transform materials into a desired quantum state and outline a potential roadmap to an era of quantum phenomena on demand.
Abstract: The past decade has witnessed an explosion in the field of quantum materials, headlined by the predictions and discoveries of novel Landau-symmetry-broken phases in correlated electron systems, topological phases in systems with strong spin-orbit coupling, and ultra-manipulable materials platforms based on two-dimensional van der Waals crystals. Discovering pathways to experimentally realize quantum phases of matter and exert control over their properties is a central goal of modern condensed-matter physics, which holds promise for a new generation of electronic/photonic devices with currently inaccessible and likely unimaginable functionalities. In this Review, we describe emerging strategies for selectively perturbing microscopic interaction parameters, which can be used to transform materials into a desired quantum state. Particular emphasis will be placed on recent successes to tailor electronic interaction parameters through the application of intense fields, impulsive electromagnetic stimulation, and nanostructuring or interface engineering. Together these approaches outline a potential roadmap to an era of quantum phenomena on demand.

587 citations

Journal ArticleDOI
10 Nov 2016-Nature
TL;DR: It is anticipated that the combination of lightwave electronics and the atomic resolution of the approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.
Abstract: Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule's highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-angstrom spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

361 citations