scispace - formally typeset
Search or ask a question
Author

Markus Schosserer

Other affiliations: Medical University of Vienna
Bio: Markus Schosserer is an academic researcher from University of Natural Resources and Life Sciences, Vienna. The author has contributed to research in topics: Senescence & Ribosomal RNA. The author has an hindex of 14, co-authored 42 publications receiving 1039 citations. Previous affiliations of Markus Schosserer include Medical University of Vienna.
Topics: Senescence, Ribosomal RNA, RNA, Biology, Human skin

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.
Abstract: Several pathways modulating longevity and stress resistance converge on translation by targeting ribosomal proteins or initiation factors, but whether this involves modifications of ribosomal RNA is unclear. Here, we show that reduced levels of the conserved RNA methyltransferase NSUN5 increase the lifespan and stress resistance in yeast, worms and flies. Rcm1, the yeast homologue of NSUN5, methylates C2278 within a conserved region of 25S rRNA. Loss of Rcm1 alters the structural conformation of the ribosome in close proximity to C2278, as well as translational fidelity, and favours recruitment of a distinct subset of oxidative stress-responsive mRNAs into polysomes. Thus, rather than merely being a static molecular machine executing translation, the ribosome exhibits functional diversity by modification of just a single rRNA nucleotide, resulting in an alteration of organismal physiological behaviour, and linking rRNA-mediated translational regulation to modulation of lifespan, and differential stress response.

212 citations

Journal ArticleDOI
TL;DR: An overview of well-documented stress situations and signals, which induce senescence is presented, among them, oncogene-induced senescenced cells and stress-induced prematuresenescence are prominent.
Abstract: Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress situations and signals, which induce senescence. Among them, oncogene-induced senescence and stress-induced premature senescence are prominent. New findings about the role of senescence in tumor biology are critically reviewed with respect to new suggestions for cancer therapy leveraging genetic and pharmacological methods to prevent senescence or to selectively kill senescent cells in tumors.

189 citations

Journal ArticleDOI
01 May 2018
TL;DR: Senescent cell derived sEVs and their miRNA cargo are suggested to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.
Abstract: Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.

146 citations

Journal ArticleDOI
TL;DR: It is proposed that miR‐21 is the first miRNA that upon its knock‐down extends the replicative lifespan of normal human cells.
Abstract: Cellular senescence of normal human cells has by now far exceeded its initial role as a model system for aging research. Many reports show the accumulation of senescent cells in vivo, their effect on their microenvironment and its double-edged role as tumour suppressor and promoter. Importantly, removal of senescent cells delays the onset of age-associated diseases in mouse model systems. To characterize the role of miRNAs in cellular senescence of endothelial cells, we performed miRNA arrays from HUVECs of five different donors. Twelve miRNAs, comprising hsa-miR-23a, hsa-miR-23b, hsa-miR-24, hsa-miR-27a, hsa-miR-29a, hsa-miR-31, hsa-miR-100, hsa-miR-193a, hsa-miR-221, hsa-miR-222 and hsa-let-7i are consistently up-regulated in replicatively senescent cells. Surprisingly, also miR-21 was found up-regulated by replicative and stress-induced senescence, despite being described as oncogenic. Transfection of early passage endothelial cells with miR-21 resulted in lower angiogenesis, and less cell proliferation mirrored by up-regulation of p21(CIP1) and down-regulation of CDK2. These two cell-cycle regulators are indirectly regulated by miR-21 via its validated direct targets NFIB (Nuclear factor 1 B-type), a transcriptional inhibitor of p21(CIP) (1) , and CDC25A, which regulates CDK2 activity by dephosphorylation. Knock-down of either NFIB or CDC25A shows a phenocopy of over-expressing miR-21 in regard to cell-cycle arrest. Finally, miR-21 over-epxression reduces the replicative lifespan, while stable knock-down by sponges extends the replicative lifespan of endothelial cells. Therefore, we propose that miR-21 is the first miRNA that upon its knock-down extends the replicative lifespan of normal human cells.

103 citations


Cited by
More filters
Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

Journal Article
TL;DR: Coppe et al. as mentioned in this paper showed that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy, including interleukin (IL)-6 and IL-8.
Abstract: PLoS BIOLOGY Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor Jean-Philippe Coppe 1 , Christopher K. Patil 1[ , Francis Rodier 1,2[ , Yu Sun 3 , Denise P. Mun oz 1,2 , Joshua Goldstein 1¤ , Peter S. Nelson 3 , Pierre-Yves Desprez 1,4 , Judith Campisi 1,2* 1 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Buck Institute for Age Research, Novato, California, United States of America, 3 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 California Pacific Medical Center Research Institute, San Francisco, California, United States of America Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA- damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Citation: Coppe JP, Patil CK, Rodier F, Sun Y, Mun oz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi:10.1371/journal.pbio.0060301 Introduction Cancer is a multistep disease in which cells acquire increasingly malignant phenotypes. These phenotypes are acquired in part by somatic mutations, which derange normal controls over cell proliferation (growth), survival, invasion, and other processes important for malignant tumorigenesis [1]. In addition, there is increasing evidence that the tissue microenvironment is an important determinant of whether and how malignancies develop [2,3]. Normal tissue environ- ments tend to suppress malignant phenotypes, whereas abnormal tissue environments such at those caused by inflammation can promote cancer progression. Cancer development is restrained by a variety of tumor suppressor genes. Some of these genes permanently arrest the growth of cells at risk for neoplastic transformation, a process termed cellular senescence [4–6]. Two tumor suppressor pathways, controlled by the p53 and p16INK4a/pRB proteins, regulate senescence responses. Both pathways integrate multiple aspects of cellular physiology and direct cell fate towards survival, death, proliferation, or growth arrest, depending on the context [7,8]. Several lines of evidence indicate that cellular senescence is a potent tumor-suppressive mechanism [4,9,10]. Many poten- tially oncogenic stimuli (e.g., dysfunctional telomeres, DNA PLoS Biology | www.plosbiology.org damage, and certain oncogenes) induce senescence [6,11]. Moreover, mutations that dampen the p53 or p16INK4a/pRB pathways confer resistance to senescence and greatly increase cancer risk [12,13]. Most cancers harbor mutations in one or both of these pathways [14,15]. Lastly, in mice and humans, a senescence response to strong mitogenic signals, such as those delivered by certain oncogenes, prevents premalignant lesions from progressing to malignant cancers [16–19]. Academic Editor: Julian Downward, Cancer Research UK, United Kingdom Received June 27, 2008; Accepted October 22, 2008; Published December 2, 2008 Copyright: O 2008 Coppe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CM, conditioned medium; DDR, DNA damage response; ELISA, enzyme-linked immunosorbent assay; EMT, epithelial–mesenchymal transition; GSE, genetic suppressor element; IL, interleukin; MIT, mitoxantrone; PRE, presenescent; PrEC, normal human prostate epithelial cell; REP, replicative exhaustion; SASP, senescence-associated secretory phenotype; SEN, senescent; shRNA, short hairpin RNA; XRA, X-irradiation * To whom correspondence should be addressed. E-mail: jcampisi@lbl.gov [ These authors contributed equally to this work. ¤ Current address: Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America December 2008 | Volume 6 | Issue 12 | e301

2,150 citations

Journal ArticleDOI
31 Oct 2019-Cell
TL;DR: A consensus from the International Cell Senescence Association (ICSA) is presented, defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers.

1,220 citations

19 Apr 2011
TL;DR: Administration of spermidine markedly extended the lifespan of yeast, flies and worms, and human immune cells and inhibited oxidative stress in ageing mice, and found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
Abstract: Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells In addition, spermidine administration potently inhibited oxidative stress in ageing mice In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity

974 citations

Journal ArticleDOI
TL;DR: Current Opinion in Nephrology and Hypertension is an indispensable journal for the busy clinician, researcher or student with condensed reviews, supplemented with References and Recommended Reading and Current World Literature.
Abstract: Each issue contains either two or three sections delivering a diverse and comprehensive coverage of all the key issues, including pathophysiology of hypertension, circulation and hemodynamics, and clinical nephrology. Current Opinion in Nephrology and Hypertension is an indispensable journal for the busy clinician, researcher or student with condensed reviews, supplemented with References and Recommended Reading and Current World Literature a thorough bibliography compiled from the top journals in the field.

464 citations