scispace - formally typeset
Search or ask a question
Author

Markus Weiger

Other affiliations: John Radcliffe Hospital, Philips, University of Würzburg  ...read more
Bio: Markus Weiger is an academic researcher from University of Zurich. The author has contributed to research in topics: Imaging phantom & Iterative reconstruction. The author has an hindex of 28, co-authored 76 publications receiving 10433 citations. Previous affiliations of Markus Weiger include John Radcliffe Hospital & Philips.


Papers
More filters
PatentDOI
TL;DR: The problem of image reconstruction from sensitivity encoded data is formulated in a general fashion and solved for arbitrary coil configurations and k‐space sampling patterns and special attention is given to the currently most practical case, namely, sampling a common Cartesian grid with reduced density.
Abstract: The invention relates to a method of parallel imaging for obtaining images by means of magnetic resonance (MR). The method includes the simultaneous measurement of sets of MR singals by an array of receiver coils, and the reconstruction of individual receiver coil images from the sets of MR signals. In order to reduce the acquisition time, the distance between adjacent phase encoding lines in k-space is increased, compared to standard Fourier imaging, by a non-integer factor smaller than the number of receiver coils. This undersampling gives rise to aliasing artifacts in the individual receiver coil images. An unaliased final image with the same field of view as in standard Fourier imaging is formed from a combination of the individual receiver coil images whereby account is taken of the mutually different spatial sensitivities of the receiver coils at the positions of voxels which in the receiver coil images become superimposed by aliasing. This requires the solution of a linear equation by means of the generalised inverse of a sensitivity matrix. The reduction of the number of phase encoding lines by a non-integer factor compared to standard Fourier imaging provides that different numbers of voxels become superimposed (by aliasing) in different regions of the receiver coil images. This effect can be exploited to shift residual aliasing artifacts outside the area of interest.

6,562 citations

Journal ArticleDOI
TL;DR: Using the proposed method, SENSE becomes practical with nonstandard k‐space trajectories, enabling considerable scan time reduction with respect to mere gradient encoding, and the in vivo feasibility of non‐Cartesian SENSE imaging with iterative reconstruction is demonstrated.
Abstract: New, efficient reconstruction procedures are proposed for sensitivity encoding (SENSE) with arbitrary k-space trajectories. The presented methods combine gridding principles with so-called conjugate-gradient iteration. In this fashion, the bulk of the work of reconstruction can be performed by fast Fourier transform (FFT), reducing the complexity of data processing to the same order of magnitude as in conventional gridding reconstruction. Using the proposed method, SENSE becomes practical with nonstandard k-space trajectories, enabling considerable scan time reduction with respect to mere gradient encoding. This is illustrated by imaging simulations with spiral, radial, and random k-space patterns. Simulations were also used for investigating the convergence behavior of the proposed algorithm and its dependence on the factor by which gradient encoding is reduced. The in vivo feasibility of non-Cartesian SENSE imaging with iterative reconstruction is demonstrated by examples of brain and cardiac imaging using spiral trajectories. In brain imaging with six receiver coils, the number of spiral interleaves was reduced by factors ranging from 2 to 6. In cardiac real-time imaging with four coils, spiral SENSE permitted reducing the scan time per image from 112 ms to 56 ms, thus doubling the frame-rate. Magn Reson Med 46:638–651, 2001. © 2001 Wiley-Liss, Inc.

1,221 citations

Journal ArticleDOI
TL;DR: It is shown that in Fourier imaging with two phase encoding directions, 2D SENSE has key advantages over one-dimensional parallel imaging approaches, resulting in superior signal-to-noise behavior.
Abstract: Sensitivity encoding in two spatial dimensions (2D SENSE) with a receiver coil array is discussed as a means of improving the encoding efficiency of three-dimensional (3D) Fourier MRI. it is shown that in Fourier imaging with two phase encoding directions, 2D SENSE has key advantages over one-dimensional parallel imaging approaches. By exploiting two dimensions for hybrid encoding, the conditioning of the reconstruction problem can be considerably improved, resulting in superior signal-to-noise behavior. As a consequence, 2D SENSE permits greater scan time reduction, which particularly benefits the inherently time-consuming 3D techniques.

253 citations

Journal ArticleDOI
TL;DR: Sensitivity encoding was used to improve the performance of three‐dimensional contrast‐enhanced magnetic resonance angiography (3D CE‐MRA) by utilizing an array of receiver coils for sensitivity encoding, and the encoding efficiency of gradient‐echo imaging was increased by factors of up to three.
Abstract: Sensitivity encoding (SENSE) was used to improve the performance of three-dimensional contrast-enhanced magnetic resonance angiography (3D CE-MRA). Utilizing an array of receiver coils for sensitivity encoding, the encoding efficiency of gradient-echo imaging was increased by factors of up to three. The feasibility of the approach was demonstrated for imaging of the abdominal vasculature. On the one hand, using a SENSE reduction factor of two, the spatial resolution of a breath-hold scan of 17 seconds was improved to 1.0 × 2.0 × 2.0 mm3. On the other hand, using threefold reduction, time-resolved 3D CE-MRA was performed with a true temporal resolution of 4 seconds, at a spatial resolution of 1.6 × 2.1 × 4.0 mm3. CE-MRA with SENSE was performed in healthy volunteers and patients and compared with a standard protocol. Throughout, diagnostic quality images were obtained, showing the ability of sensitivity encoding to enhance spatial and/or temporal resolution considerably in clinical angiographic examinations. J. Magn. Reson. Imaging 2000;12:671–677. © 2000 Wiley-Liss, Inc.

222 citations

Journal ArticleDOI
TL;DR: The implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo are studied and new, specific design principles are identified.
Abstract: In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495–504, 2001. © 2001 Wiley-Liss, Inc.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference and demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin‐echo brain imaging and 3D contrast enhanced angiography.
Abstract: The sparsity which is implicit in MR images is exploited to significantly undersample k -space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressedsensing, images with a sparse representation can be recovered from randomly undersampled k -space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise-like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo-random variable-density undersampling of phase-encodes. The reconstruction is performed by minimizing the 1 norm of a transformed image, subject to data

6,653 citations

Journal ArticleDOI
TL;DR: This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD‐AUTO‐SMASH reconstruction techniques and provides unaliased images from each component coil prior to image combination.
Abstract: In this study, a novel partially parallel acquisition (PPA) method is presented which can be used to accelerate image acquisition using an RF coil array for spatial encoding. This technique, GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is an extension of both the PILS and VD-AUTO-SMASH reconstruction techniques. As in those previous methods, a detailed, highly accurate RF field map is not needed prior to reconstruction in GRAPPA. This information is obtained from several k-space lines which are acquired in addition to the normal image acquisition. As in PILS, the GRAPPA reconstruction algorithm provides unaliased images from each component coil prior to image combination. This results in even higher SNR and better image quality since the steps of image reconstruction and image combination are performed in separate steps. After introducing the GRAPPA technique, primary focus is given to issues related to the practical implementation of GRAPPA, including the reconstruction algorithm as well as analysis of SNR in the resulting images. Finally, in vivo GRAPPA images are shown which demonstrate the utility of the technique.

5,022 citations

Journal ArticleDOI
12 Jun 2008-Nature
TL;DR: An overview of the current state of fMRI is given, and the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation are presented.
Abstract: Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.

3,075 citations

Journal ArticleDOI
TL;DR: Diffusion tensor imaging (DTI) is a promising method for characterizing microstructural changes or differences with neuropathology and treatment and the biological mechanisms, acquisition, and analysis of DTI measurements are addressed.

2,315 citations

Journal ArticleDOI
TL;DR: The authors emphasize on an intuitive understanding of CS by describing the CS reconstruction as a process of interference cancellation, and there is also an emphasis on the understanding of the driving factors in applications.
Abstract: This article reviews the requirements for successful compressed sensing (CS), describes their natural fit to MRI, and gives examples of four interesting applications of CS in MRI. The authors emphasize on an intuitive understanding of CS by describing the CS reconstruction as a process of interference cancellation. There is also an emphasis on the understanding of the driving factors in applications, including limitations imposed by MRI hardware, by the characteristics of different types of images, and by clinical concerns.

2,134 citations