scispace - formally typeset
Search or ask a question
Author

Marlene Bartos

Bio: Marlene Bartos is an academic researcher from University of Freiburg. The author has contributed to research in topics: Dentate gyrus & Interneuron. The author has an hindex of 28, co-authored 49 publications receiving 5209 citations. Previous affiliations of Marlene Bartos include Technische Universität München & University of Aberdeen.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental analysis in the hippocampus and the neocortex and computational analysis suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
Abstract: Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.

1,916 citations

Journal ArticleDOI
TL;DR: An interneuron network model based on experimentally determined properties was able to generate oscillatory activity with higher coherence over a broad range of frequencies (20–110 Hz), and high coherence and flexibility in frequency control emerge from the combination of synaptic properties, network structure, and electrical coupling.
Abstract: Networks of GABAergic interneurons are of critical importance for the generation of gamma frequency oscillations in the brain. To examine the underlying synaptic mechanisms, we made paired recordings from “basket cells” (BCs) in different subfields of hippocampal slices, using transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the parvalbumin promoter. Unitary inhibitory postsynaptic currents (IPSCs) showed large amplitude and fast time course with mean amplitude-weighted decay time constants of 2.5, 1.2, and 1.8 ms in the dentate gyrus, and the cornu ammonis area 3 (CA3) and 1 (CA1), respectively (33–34°C). The decay of unitary IPSCs at BC–BC synapses was significantly faster than that at BC–principal cell synapses, indicating target cell-specific differences in IPSC kinetics. In addition, electrical coupling was found in a subset of BC–BC pairs. To examine whether an interneuron network with fast inhibitory synapses can act as a gamma frequency oscillator, we developed an interneuron network model based on experimentally determined properties. In comparison to previous interneuron network models, our model was able to generate oscillatory activity with higher coherence over a broad range of frequencies (20–110 Hz). In this model, high coherence and flexibility in frequency control emerge from the combination of synaptic properties, network structure, and electrical coupling.

521 citations

Journal ArticleDOI
TL;DR: The data indicate that synaptic inhibition onto PV+ interneurons is indispensable for theta- and its coupling to gamma oscillations but not for rhythmic gamma-activity in the hippocampus.
Abstract: Hippocampal theta (5–10 Hz) and gamma (35–85 Hz) oscillations depend on an inhibitory network of GABAergic interneurons. However, the lack of methods for direct and cell-type-specific interference with inhibition has prevented better insights that help link synaptic and cellular properties with network function. Here, we generated genetically modified mice (PV-Δγ2) in which synaptic inhibition was ablated in parvalbumin-positive (PV+) interneurons. Hippocampal local field potential and unit recordings in the CA1 area of freely behaving mice revealed that theta rhythm was strongly reduced in these mice. The characteristic coupling of theta and gamma oscillations was strongly altered in PV-Δγ2 mice more than could be accounted for by the reduction in theta rhythm only. Surprisingly, gamma oscillations were not altered. These data indicate that synaptic inhibition onto PV+ interneurons is indispensable for theta- and its coupling to gamma oscillations but not for rhythmic gamma-activity in the hippocampus. Similar alterations in rhythmic activity were obtained in a computational hippocampal network model mimicking the genetic modification, suggesting that intrahippocampal networks might contribute to these effects.

357 citations

Journal ArticleDOI
05 Jan 2006-Neuron
TL;DR: It is shown that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing, which may confer increased robustness to gamma oscillations in the brain.

330 citations

Journal ArticleDOI
TL;DR: The fast conductance change at interneuron–interneuron synapses may promote the generation of high-frequency oscillations observed in the dentate gyrus of rat hippocampal slices in vivo.
Abstract: Mutual synaptic interactions between GABAergic interneurons are thought to be of critical importance for the generation of network oscillations and for temporal encoding of information in the hippocampus. However, the functional properties of synaptic transmission between hippocampal interneurons are largely unknown. We have made paired recordings from basket cells (BCs) in the dentate gyrus of rat hippocampal slices, followed by correlated light and electron microscopical analysis. Unitary GABAAreceptor-mediated IPSCs at BC–BC synapses recorded at the soma showed a fast rise and decay, with a mean decay time constant of 2.5 ± 0.2 msec (32°C). Synaptic transmission at BC–BC synapses showed paired-pulse depression (PPD) (32 ± 5% for 10 msec interpulse intervals) and multiple-pulse depression during repetitive stimulation. Detailed passive cable model simulations based on somatodendritic morphology and localization of synaptic contacts further indicated that the conductance change at the postsynaptic site was even faster, decaying with a mean time constant of 1.8 ± 0.6 msec. Sequential triple recordings revealed that the decay time course of IPSCs at BC–BC synapses was approximately twofold faster than that at BC–granule cell synapses, whereas the extent of PPD was comparable. To examine the consequences of the fast postsynaptic conductance change for the generation of oscillatory activity, we developed a computational model of an interneuron network. The model showed robust oscillations at frequencies >60 Hz if the excitatory drive was sufficiently large. Thus the fast conductance change at interneuron–interneuron synapses may promote the generation of high-frequency oscillations observed in the dentate gyrusin vivo.

301 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that the most plausible candidate is the formation of dynamic links mediated by synchrony over multiple frequency bands.
Abstract: The emergence of a unified cognitive moment relies on the coordination of scattered mosaics of functionally specialized brain regions. Here we review the mechanisms of large-scale integration that counterbalance the distributed anatomical and functional organization of brain activity to enable the emergence of coherent behaviour and cognition. Although the mechanisms involved in large-scale integration are still largely unknown, we argue that the most plausible candidate is the formation of dynamic links mediated by synchrony over multiple frequency bands.

4,485 citations

Book
01 Jan 2006
TL;DR: The brain's default state: self-organized oscillations in rest and sleep, and perturbation of the default patterns by experience.
Abstract: Prelude. Cycle 1. Introduction. Cycle 2. Structure defines function. Cycle 3. Diversity of cortical functions is provided by inhibition. Cycle 4. Windows on the brain. Cycle 5. A system of rhythms: from simple to complex dynamics. Cycle 6. Synchronization by oscillation. Cycle 7. The brain's default state: self-organized oscillations in rest and sleep. Cycle 8. Perturbation of the default patterns by experience. Cycle 9. The gamma buzz: gluing by oscillations in the waking brain. Cycle 10. Perceptions and actions are brain state-dependent. Cycle 11. Oscillations in the "other cortex:" navigation in real and memory space. Cycle 12. Coupling of systems by oscillations. Cycle 13. The tough problem. References.

4,266 citations

Journal ArticleDOI
TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Abstract: Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

3,366 citations

Journal ArticleDOI
TL;DR: It is proposed that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions and the empirical support for this framework is discussed.
Abstract: In order to understand the working brain as a network, it is essential to identify the mechanisms by which information is gated between regions. We here propose that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions. The functional inhibition is reflected in oscillatory activity in the alpha band (8-13 Hz). From a physiological perspective the alpha activity provides pulsed inhibition reducing the processing capabilities of a given area. Active processing in the engaged areas is reflected by neuronal synchronization in the gamma band (30-100 Hz) accompanied by an alpha band decrease. According to this framework the brain should be studied as a network by investigating cross-frequency interactions between gamma and alpha activity. Specifically the framework predicts that optimal task performance will correlate with alpha activity in task-irrelevant areas. In this review we will discuss the empirical support for this framework. Given that alpha activity is by far the strongest signal recorded by EEG and MEG, we propose that a major part of the electrophysiological activity detected from the working brain reflects gating by inhibition.

2,448 citations

Journal ArticleDOI
TL;DR: The cellular and synaptic mechanisms underlying gamma oscillations are reviewed and empirical questions and controversial conceptual issues are outlined, finding that gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition.
Abstract: Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.

2,168 citations