scispace - formally typeset
Search or ask a question
Author

Marshall Bern

Bio: Marshall Bern is an academic researcher from PARC. The author has contributed to research in topics: Glycan & Pitteway triangulation. The author has an hindex of 51, co-authored 199 publications receiving 10585 citations. Previous affiliations of Marshall Bern include University of California, Berkeley.


Papers
More filters
Proceedings ArticleDOI
24 Jul 1998
TL;DR: The algorthim is the first for this problem with provable guarantees for the reconstruction of surfaces from unorganized sample points in IR3, based on the three-dimensional Voronoi diagram.
Abstract: Author(s): Amenta, Nina; Bern, Marshall; Kamvysselis, Manolis | Abstract: We describe our experience with a new algorithm for the reconstruction of surfaces from unorganized sample points in IR3. The algorthim is the first for this problem with provable guarantees. Given a ''good sample'' from a smooth surface, the output is guaranteed to be topologically correct and convergent to the original surface as the sampling sensity increases. The definition of a good sample is itself interesting: the required sampling density varies locally, rigorously capturing the intuitive notion that featureless areas can be reconstructed from fewer samples. The output mesh interpolates, rather than approximates, the input points. Our algorithm is based on the three-dimensional Voronoi diagram. Given a good program for thsi fundamental subroutine, the algorithm is quite easy to implement.

1,037 citations

Journal ArticleDOI
TL;DR: A simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points that uses Voronoi vertices to remove triangles from the Delaunay triangulation is given.
Abstract: We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled surfaces, where density depends on a local feature size function, the output is topologically valid and convergent (both pointwise and in surface normals) to the original surface. We briefly describe an implementation of the algorithm and show example outputs.

631 citations

Book ChapterDOI
01 Sep 1992

603 citations

Proceedings ArticleDOI
07 Jun 1998
TL;DR: A simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points that uses Voronoi vertices to remove triangles from the Delaunay triangulation is given.
Abstract: We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled surfaces, where density depends on a local feature size function, the output is topologically valid and convergent (both pointwise and in surface normals) to the original surface. We briefly describe an implementation of the algorithm and show example outputs.

493 citations

Journal ArticleDOI
TL;DR: Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry that facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot.
Abstract: Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence, Byonic can search for tens or even hundreds of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic's Wildcard Search allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic's Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites.

492 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work presents a simple and efficient implementation of Lloyd's k-means clustering algorithm, which it calls the filtering algorithm, and establishes the practical efficiency of the algorithm's running time.
Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space R/sup d/ and an integer k and the problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. A popular heuristic for k-means clustering is Lloyd's (1982) algorithm. We present a simple and efficient implementation of Lloyd's k-means clustering algorithm, which we call the filtering algorithm. This algorithm is easy to implement, requiring a kd-tree as the only major data structure. We establish the practical efficiency of the filtering algorithm in two ways. First, we present a data-sensitive analysis of the algorithm's running time, which shows that the algorithm runs faster as the separation between clusters increases. Second, we present a number of empirical studies both on synthetically generated data and on real data sets from applications in color quantization, data compression, and image segmentation.

5,288 citations

Journal ArticleDOI
TL;DR: The Perseus software platform was developed to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data and it is anticipated that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.
Abstract: A main bottleneck in proteomics is the downstream biological analysis of highly multivariate quantitative protein abundance data generated using mass-spectrometry-based analysis. We developed the Perseus software platform (http://www.perseus-framework.org) to support biological and biomedical researchers in interpreting protein quantification, interaction and post-translational modification data. Perseus contains a comprehensive portfolio of statistical tools for high-dimensional omics data analysis covering normalization, pattern recognition, time-series analysis, cross-omics comparisons and multiple-hypothesis testing. A machine learning module supports the classification and validation of patient groups for diagnosis and prognosis, and it also detects predictive protein signatures. Central to Perseus is a user-friendly, interactive workflow environment that provides complete documentation of computational methods used in a publication. All activities in Perseus are realized as plugins, and users can extend the software by programming their own, which can be shared through a plugin store. We anticipate that Perseus's arsenal of algorithms and its intuitive usability will empower interdisciplinary analysis of complex large data sets.

5,165 citations

Journal ArticleDOI
TL;DR: A novel peptide search engine using a probabilistic scoring model that can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, and accommodates extremely large databases.
Abstract: A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spect...

4,689 citations

Journal ArticleDOI
TL;DR: A modularity matrix plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations, and a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong are proposed.
Abstract: We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as ``modularity'' over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a centrality measure that identifies vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

4,559 citations