scispace - formally typeset
Search or ask a question
Author

Martin A. Read

Other affiliations: King's College London
Bio: Martin A. Read is an academic researcher from Institute of Cancer Research. The author has contributed to research in topics: Telomerase & G-quadruplex. The author has an hindex of 14, co-authored 19 publications receiving 1861 citations. Previous affiliations of Martin A. Read include King's College London.

Papers
More filters
Journal ArticleDOI
TL;DR: Calculated relative binding energies predict enhanced selectivity compared with earlier 3,6-disubstituted compounds, as a result of the anilino substituent at the 9-position of the acridine chromophore, which is predicted to lie in a third groove of the quadruplex.
Abstract: The telomerase enzyme is a potential therapeutic target in many human cancers. A series of potent inhibitors has been designed by computer modeling, which exploit the unique structural features of quadruplex DNA. These 3,6,9-trisubstituted acridine inhibitors are predicted to interact selectively with the human DNA quadruplex structure, as a means of specifically inhibiting the action of human telomerase in extending the length of single-stranded telomeric DNA. The anilino substituent at the 9-position of the acridine chromophore is predicted to lie in a third groove of the quadruplex. Calculated relative binding energies predict enhanced selectivity compared with earlier 3,6-disubstituted compounds, as a result of this substituent. The ranking order of energies is in accord with equilibrium binding constants for quadruplex measured by surface plasmon resonance techniques, which also show reduced duplex binding compared with the disubstituted compounds. The 3,6,9-trisubstututed acridines have potent in vitro inhibitory activity against human telomerase, with EC50 values of up to 60 nM.

434 citations

Journal ArticleDOI
TL;DR: The antitelomerase and antitumor properties of a small-molecule compound designed by computer modeling to interact with and stabilize human G-quadruplex DNA, a structure that may form with telomeric DNA, thereby inhibiting access to telomerase, are described.
Abstract: The telomerase complex is responsible for telomere maintenance and represents a promising cancer therapeutic target. We describe herein the antitelomerase and antitumor properties of a small-molecule compound designed by computer modeling to interact with and stabilize human G-quadruplex DNA, a structure that may form with telomeric DNA, thereby inhibiting access to telomerase. The 3,6,9-trisubstituted acridine 9-[4-(N,N-dimethylamino)phenylamino]-3,6-bis(3-pyrrolodinopropionamido) acridine (BRACO19) represents one of the most potent cell-free inhibitors of human telomerase yet described (50% inhibitory concentration of 115 +/- 18 nM). Moreover, in contrast to G-quadruplex interactive agents described previously, BRACO19 did not cause nonspecific acute cytotoxicity at similar concentrations to those required to completely inhibit telomerase activity. There exists a 90-fold differential (mean 50% inhibitory concentration for acute cell kill across seven human tumor cell lines of 10.6 +/- 0.7 microM). The exposure of 21NT human breast cancer cells, which possess relatively short telomeres, to nonacute cytotoxic concentrations of BRACO19 (2 microM) resulted in a marked reduction in cell growth after only 15 days. This was concomitant with a reduction in intracellular telomerase activity and onset of senescence as indicated by an increase in the number of beta-galactosidase positive-staining cells. Intraperitoneal administration of nontoxic doses of BRACO19 (2 mg/kg) to mice bearing advanced stage A431 human vulval carcinoma subcutaneous xenografts and previously treated with paclitaxel induced a significant increase in antitumor effect compared with that observed with paclitaxel alone. BRACO19 thus represents the first of a "second generation" of G-quadruplex-mediated telomerase/telomere-interactive compounds. It possesses nanomolar potency against telomerase but low nonspecific cytotoxicity, growth inhibitory effects, and induction of senescence in a human breast cancer cell line and, moreover, significant antitumor activity in vivo when administered post paclitaxel to mice bearing a human tumor xenograft carcinoma.

283 citations

Journal ArticleDOI
TL;DR: This fluorenone series of compounds exhibits a broad range of telomerase inhibitory activity, with the most potent inhibitors displaying levels of activity comparable with other classes of G-quadruplex-interactive agents.
Abstract: Telomerase is a major new target for the rational design of novel anticancer agents. We have previously identified anthraquinone-based molecules capable of inhibiting telomerase by stabilizing G-quadruplex structures formed by the folding of telomeric DNA. In the present study we describe the synthesis and biological evaluation of a series of analogous fluorenone-based compounds with the specific aims of, first, determining if the anthraquinone chromophore is a prerequisite for activity and, second, whether the conventional cytotoxicity inherent to anthraquinone-based molecules may be reduced by rational design. This fluorenone series of compounds exhibits a broad range of telomerase inhibitory activity, with the most potent inhibitors displaying levels of activity (8-12 microM) comparable with other classes of G-quadruplex-interactive agents. Comparisons with analogous anthraquinone-based compounds reveal a general reduction in the level of cellular cytotoxicity. Molecular modeling techniques have been used to compare the interaction of fluorenone- and analogous anthraquinone-based inhibitors with a human G-quadruplex structure and to rationalize their observed biological activities.

213 citations

Journal ArticleDOI
TL;DR: Structural and mechanistic aspects of these quadruplex complexes are reviewed here, together with a discussion of the issues of selectivity/potency for quadruplex DNAs vs duplex DNA.
Abstract: G-quadruplexes as therapeutic targets. The ends of chromosomes (telomeres) consist of tandem repeats of guanine-rich sequences. In eukaryotics, telomeric DNA is single stranded for the final few hundred bases. These single- stranded sequences can fold into a variety of four-stranded structures (quadruplexes) held together by quartets of hydrogen-bonded guanine bases. The reverse transcriptase enzyme telomerase is responsible for maintaining telomeric DNA length in over 85% of cancer cells by catalyzing the synthesis of further telomeric repeats. Its substrate is the single-stranded 3'-telomeric end. Inhibition of telomere maintenance can be achieved by stabilization of a quadruplex structure for the telomere end. A variety of small molecules have been devised to achieve this, ranging from anthraquinones to porphyrins, acridines, and complex polycyclic systems. Structural and mechanistic aspects of these quadruplex complexes are reviewed here, together with a discussion of the issues of selectivity/potency for quadruplex DNAs vs duplex DNA.

202 citations

Journal ArticleDOI
TL;DR: In contrast to previous studies directed toward triplex DNA, it is evident that stringent control over positional attachment of substituents is not a necessity for effective telomerase inhibition.
Abstract: Telomerase is an attractive target for the design of new anticancer drugs. We have previously described a series of 1,4- and 2,6-difunctionalized amidoanthracene-9,10-diones that inhibit human telomerase via stabilization of telomeric G-quadruplex structures. The present study details the preparation of three further, distinct series of regioisomeric difunctionalized amidoanthracene-9,10-diones substituted at the 1,5-, 1,8-, and 2,7-positions, respectively. Their in vitro cytotoxicity and Taq DNA polymerase and human telomerase inhibition properties are reported and compared with those of their 1,4- and 2,6-isomers. Potent telomerase inhibition (telIC50 values 1.3−17.3 μM) is exhibited within each isomeric series. In addition, biophysical and molecular modeling studies have been conducted to examine binding to the target G-quadruplex structure formed by the folding of telomeric DNA. These studies indicate that the isomeric diamidoanthracene-9,10-diones bind to the human telomeric G-quadruplex structure wi...

152 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In the early 1960s, the discovery of crown ethers and spherands by Pedersen, Lehn, and Cram3 led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, hydrophilic and hydrophobic interactions to achieve these highly complex and often symmetrical architectures as mentioned in this paper.
Abstract: Fascination with supramolecular chemistry over the last few decades has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nanoscopic dimensions Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries both inside and between the fields of chemistry, physics, and biology This chemistry is of continuing interest for synthetic chemists; partly because of the fascinating physical and chemical properties and the complex and varied aesthetically pleasing structures that supramolecules possess For scientists seeking to design novel molecular materials exhibiting unusual sensing, magnetic, optical, and catalytic properties, and for researchers investigating the structure and function of biomolecules, supramolecular chemistry provides limitless possibilities Thus, it transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field In the early 1960s, the discovery of ‘crown ethers’, ‘cryptands’ and ‘spherands’ by Pedersen,1 Lehn,2 and Cram3 respectively, led to the realization that small, complementary molecules can be made to recognize each other through non-covalent interactions such as hydrogen-bonding, charge-charge, donor-acceptor, π-π, van der Waals, etc Such ‘programmed’ molecules can thus be self-assembled by utilizing these interactions in a definite algorithm to form large supramolecules that have different physicochemical properties than those of the precursor building blocks Typical systems are designed such that the self-assembly process is kinetically reversible; the individual building blocks gradually funnel towards an ensemble that represents the thermodynamic minimum of the system via numerous association and dissociation steps By tuning various reaction parameters, the reaction equilibrium can be shifted towards the desired product As such, self-assembly has a distinct advantage over traditional, stepwise synthetic approaches when accessing large molecules It is well known that nature has the ability to assemble relatively simple molecular precursors into extremely complex biomolecules, which are vital for life processes Nature’s building blocks possess specific functionalities in configurations that allow them to interact with one another in a deliberate manner Protein folding, nucleic acid assembly and tertiary structure, phospholipid membranes, ribosomes, microtubules, etc are but a selective, representative example of self-assembly in nature that is of critical importance for living organisms Nature makes use of a variety of weak, non-covalent interactions such as hydrogen–bonding, charge–charge, donor–acceptor, π-π, van der Waals, hydrophilic and hydrophobic, etc interactions to achieve these highly complex and often symmetrical architectures In fact, the existence of life is heavily dependent on these phenomena The aforementioned structures provide inspiration for chemists seeking to exploit the ‘weak interactions’ described above to make scaffolds rivaling the complexity of natural systems The breadth of supramolecular chemistry has progressively increased with the synthesis of numerous unique supramolecules each year Based on the interactions used in the assembly process, supramolecular chemistry can be broadly classified in to three main branches: i) those that utilize H-bonding motifs in the supramolecular architectures, ii) processes that primarily use other non-covalent interactions such as ion-ion, ion-dipole, π–π stacking, cation-π, van der Waals and hydrophobic interactions, and iii) those that employ strong and directional metal-ligand bonds for the assembly process However, as the scale and degree of complexity of desired molecules increases, the assembly of small molecular units into large, discrete supramolecules becomes an increasingly daunting task This has been due in large part to the inability to completely control the directionality of the weak forces employed in the first two classifications above Coordination-driven self-assembly, which defines the third approach, affords a greater control over the rational design of 2D and 3D architectures by capitalizing on the predictable nature of the metal-ligand coordination sphere and ligand lability to encode directionality Thus, this third strategy represents an alternative route to better execute the “bottom-up” synthetic strategy for designing molecules of desired dimensions, ranging from a few cubic angstroms to over a cubic nanometer For instance, a wide array of 2D systems: rhomboids, squares, rectangles, triangles, etc, and 3D systems: trigonal pyramids, trigonal prisms, cubes, cuboctahedra, double squares, adamantanoids, dodecahedra and a variety of other cages have been reported As in nature, inherent preferences for particular geometries and binding motifs are ‘encoded’ in certain molecules depending on the metals and functional groups present; these moieties help to control the way in which the building blocks assemble into well-defined, discrete supramolecules4 Since the early pioneering work by Lehn5 and Sauvage6 on the feasibility and usefulness of coordination-driven self-assembly in the formation of infinite helicates, grids, ladders, racks, knots, rings, catenanes, rotaxanes and related species,7 several groups - Stang,8 Raymond,9 Fujita,10 Mirkin,11 Cotton12 and others13,14 have independently developed and exploited novel coordination-based paradigms for the self-assembly of discrete metallacycles and metallacages with well-defined shapes and sizes In the last decade, the concepts and perspectives of coordination-driven self-assembly have been delineated and summarized in several insightful reviews covering various aspects of coordinationdriven self-assembly15 In the last decade, the use of this synthetic strategy has led to metallacages dubbed as “molecular flasks” by Fujita,16 and Raymond and Bergman,17 which due to their ability to encapsulate guest molecules, allowed for the observation of unique chemical phenomena and unusual reactions which cannot be achieved in the conventional gas, liquid or solid phases Furthermore, these assemblies found applications in supramolecular catalysis18,19 and as nanomaterials as developed by Hupp20 and others21,22 This review focuses on the journey of early coordination-driven self-assembly paradigms to more complex and discrete 2D and 3D supramolecular ensembles over the last decade We begin with a discussion of various approaches that have been developed by different groups to assemble finite supramolecular architectures The subsequent sections contain detailed discussions on the synthesis of discrete 2D and 3D systems, their functionalizations and applications

2,388 citations

Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: This crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K+ concentration that approximates its intracellular concentration suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomerre-associated proteins.
Abstract: Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation. Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures, which may be involved in the structure of telomere ends. Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K(+) concentration that approximates its intracellular concentration. K(+) ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na(+)-containing quadruplex structures. All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins.

1,849 citations

Journal ArticleDOI
TL;DR: The evidence for G-quadruplexes in gene promoters is described and their potential as therapeutic targets are discussed, as well as progress in the development of strategies to harness this potential through intervention with small-molecule ligands.
Abstract: G-quadruplexes are four-stranded DNA structures that are over-represented in gene promoter regions and are viewed as emerging therapeutic targets in oncology, as transcriptional repression of oncogenes through stabilization of these structures could be a novel anticancer strategy. Many gene promoter G-quadruplexes have physicochemical properties and structural characteristics that might make them druggable, and their structural diversity suggests that a high degree of selectivity might be possible. Here, we describe the evidence for G-quadruplexes in gene promoters and discuss their potential as therapeutic targets, as well as progress in the development of strategies to harness this potential through intervention with small-molecule ligands.

1,420 citations

Journal ArticleDOI
TL;DR: Recent evidence for the in vivo presence and function of DNA and RNA G-quadruplexes in various cellular pathways including DNA replication, gene expression and telomere maintenance is summarized.
Abstract: 'If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in vivo' (Statement by Aaron Klug over 30 years ago).During the last decade, four-stranded helical structures called G-quadruplex (or G4) have emerged from being a structural curiosity observed in vitro, to being recognized as a possible nucleic acid based mechanism for regulating multiple biological processes in vivo. The sequencing of many genomes has revealed that they are rich in sequence motifs that have the potential to form G-quadruplexes and that their location is non-random, correlating with functionally important genomic regions. In this short review, we summarize recent evidence for the in vivo presence and function of DNA and RNA G-quadruplexes in various cellular pathways including DNA replication, gene expression and telomere maintenance. We also highlight remaining open questions that will have to be addressed in the future.

1,100 citations

Journal ArticleDOI
TL;DR: The folding structure of the human telomeric sequence in K+ solution determined by NMR demonstrates a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands, and suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomersic DNA.
Abstract: Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.

1,014 citations