scispace - formally typeset
Search or ask a question
Author

Martin Bourgeois

Bio: Martin Bourgeois is an academic researcher. The author has contributed to research in topics: Optical switch & Silicon photonics. The author has an hindex of 1, co-authored 1 publications receiving 197 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of two-photon absorption and Kerr nonlinearity on the optical properties of a one-dimensional photonic crystal made with amorphous silicon and SiO2 was studied.
Abstract: We study the effect of two-photon absorption and Kerr nonlinearity on the optical properties of a one-dimensional photonic crystal made with amorphous silicon and SiO2. A stop band appearing near 1.5 μm is monitored with a weak probe beam and modulated by changes in the refractive index caused by a pump pulse at 1.71 μm with 18 GW/cm2 peak intensity. Nonlinear optical characterization of the sample using Z-scan points out to two-photon absorption as the main contributor to free carrier excitation in silicon at that power level. Modulation in the transmittance near the band edge is found to be dominated by the optical Kerr effect within the pulse overlap (∼400 fs) whereas free carrier index changes are observed for 12 ps.

204 citations


Cited by
More filters
Journal ArticleDOI
28 Oct 2004-Nature
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

1,506 citations

Journal ArticleDOI
TL;DR: A unified theoretical platform that not only can be used for understanding the underlying physics but should also provide guidance toward new and useful applications is provided.
Abstract: Several kinds of nonlinear optical effects have been observed in recent years using silicon waveguides, and their device applications are attracting considerable attention. In this review, we provide a unified theoretical platform that not only can be used for understanding the underlying physics but should also provide guidance toward new and useful applications. We begin with a description of the third-order nonlinearity of silicon and consider the tensorial nature of both the electronic and Raman contributions. The generation of free carriers through two-photon absorption and their impact on various nonlinear phenomena is included fully within the theory presented here. We derive a general propagation equation in the frequency domain and show how it leads to a generalized nonlinear Schrodinger equation when it is converted to the time domain. We use this equation to study propagation of ultrashort optical pulses in the presence of self-phase modulation and show the possibility of soliton formation and supercontinuum generation. The nonlinear phenomena of cross-phase modulation and stimulated Raman scattering are discussed next with emphasis on the impact of free carriers on Raman amplification and lasing. We also consider the four-wave mixing process for both continuous-wave and pulsed pumping and discuss the conditions under which parametric amplification and wavelength conversion can be realized with net gain in the telecommunication band.

877 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the way in which strongly modulated photonic crystals differ from other optical media, and clarify what they can do, including light confinement, frequency dispersion and spatial dispersion.
Abstract: Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light–matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

403 citations

Journal ArticleDOI
Xiaoyong Hu1, Ping Jiang1, Chengyuan Ding1, Hong Yang1, Qihuang Gong1 
TL;DR: In this paper, the authors proposed ultrafast and low-power photonic-crystal all-optical switching based on strong optical nonlinearity enhancement due to excited-state interelectron transfer.
Abstract: Photonic crystals, materials with periodic dielectric structures, are able to control the propagation states of photons owing to the so-called photonic-bandgap effect1. Nonlinear photonic crystals, whose refractive-index distribution can be tuned optically, have been used to demonstrate all-optical switching2. However, a high pump intensity is usually required because the nonlinear optical coefficient of conventional materials is relatively small3. Here we report ultrafast and low-power photonic-crystal all-optical switching based on strong optical nonlinearity enhancement due to excited-state interelectron transfer. Compared with the case without nonlinearity enhancement, the switching operation power is reduced by four orders of magnitude while the ultrafast response time, of the order of a picosecond, is maintained. This provides a strategy for constructing photonic materials with large nonlinearity and studying ultrafast low-power integrated photonic devices.

266 citations