scispace - formally typeset
Search or ask a question
Author

Martin Citron

Other affiliations: Harvard University, Eli Lilly and Company, UCB  ...read more
Bio: Martin Citron is an academic researcher from Amgen. The author has contributed to research in topics: Amyloid precursor protein & Amyloid precursor protein secretase. The author has an hindex of 53, co-authored 102 publications receiving 24816 citations. Previous affiliations of Martin Citron include Harvard University & Eli Lilly and Company.


Papers
More filters
Journal ArticleDOI
22 Oct 1999-Science
TL;DR: Overexpression of a transmembrane aspartic protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta- secretase positions.
Abstract: Cerebral deposition of amyloid beta peptide (Abeta) is an early and critical feature of Alzheimer's disease. Abeta generation depends on proteolytic cleavage of the amyloid precursor protein (APP) by two unknown proteases: beta-secretase and gamma-secretase. These proteases are prime therapeutic targets. A transmembrane aspartic protease with all the known characteristics of beta-secretase was cloned and characterized. Overexpression of this protease, termed BACE (for beta-site APP-cleaving enzyme) increased the amount of beta-secretase cleavage products, and these were cleaved exactly and only at known beta-secretase positions. Antisense inhibition of endogenous BACE messenger RNA decreased the amount of beta-secretase cleavage products, and purified BACE protein cleaved APP-derived substrates with the same sequence specificity as beta-secretase. Finally, the expression pattern and subcellular localization of BACE were consistent with that expected for beta-secretase. Future development of BACE inhibitors may prove beneficial for the treatment of Alzheimer's disease.

3,879 citations

Journal ArticleDOI
TL;DR: The findings indicate that the FAD–linked mutations may all cause Alzheimer's disease by increasing the extracellular concentration of Aβ42(43), thereby fostering cerebral deposition of this highly amyloidogenic peptide.
Abstract: To determine whether the presenilin 1 (PS1), presenilin 2 (PS2) and amyloid beta-protein precursor (APP) mutations linked to familial Alzheimer's disease (FAD) increase the extracellular concentration of amyloid beta-protein (A beta) ending at A beta 42(43) in vivo, we performed a blinded comparison of plasma A beta levels in carriers of these mutations and controls. A beta 1-42(43) was elevated in plasma from subjects with FAD-linked PS1 (P < 0.0001), PS2N1411 (P = 0.009), APPK670N,M671L (P < 0.0001), and APPV7171 (one subject) mutations. A beta ending at A beta 42(43) was also significantly elevated in fibroblast media from subjects with PS1 (P < 0.0001) or PS2 (P = 0.03) mutations. These findings indicate that the FAD-linked mutations may all cause Alzhelmer's disease by increasing the extracellular concentration of A beta 42(43), thereby fostering cerebral deposition of this highly amyloidogenic peptide.

2,514 citations

Journal ArticleDOI
17 Dec 1992-Nature
TL;DR: C cultured cells which express a β-APP complementary DNA bearing a double mutation found in a Swedish FAD family produce ∼6–8-fold more Aβ than cells expressing normalβ-APP, and this increase is confirmed for elucidating the fundamental mechanism of Alzheimer's disease.
Abstract: PROGRESSIVE cerebral deposition of the 39–43-amino-acid amy-loid β-protein (Aβ) is an invariant feature of Alzheimer's disease which precedes symptoms of dementia by years or decades. The only specific molecular defects that cause Alzheimer's disease which have been identified so far are missense mutations in the gene encoding the β-amyloid precursor protein (β3-APP) in certain families with an autosomal dominant form of the disease (familial Alzheimer's disease, or FAD)1–5. These mutations are located within or immediately flanking the Aβ region of β-APP, but the mechanism by which they cause the pathological phenotype of early and accelerated Aβ deposition is unknown. Here we report that cultured cells which express a β-APP complementary DNA bearing a double mutation (Lys to Asn at residue 595 plus Met to Leu at position 596) found in a Swedish FAD family5 produce ∼6–8-fold more Aβ than cells expressing normal β-APP. The Met 596 to Leu mutation is principally responsible for the increase. These data establish a direct link between a FAD genotype and the clinicopathological phenotype. Further, they confirm the relev-ance of the continuous Aβ production by cultured cells6–8 for elucidating the fundamental mechanism of Alzheimer's disease.

1,744 citations

Journal ArticleDOI
TL;DR: The data demonstrate that the preseniiin mutations cause a dominant gain of function and may induce AD by enhancing Aβ42 production, thus promoting cerebral β-amyloidosis.
Abstract: The mechanism by which mutations in the presenilin (PS) genes cause the most aggressive form of early-onset Alzheimer's disease (AD) is unknown, but fibroblasts from mutation carriers secrete increased levels of the amyloidogenic A beta 42 peptide, the main component of AD plaques. We established transfected cell and transgenic mouse models that coexpress human PS and amyloid beta-protein precursor (APP) genes and analyzed quantitatively the effects of PS expression on APP processing. In both models, expression of wild-type PS genes did not alter APP levels, alpha- and beta-secretase activity and A beta production. In the transfected cells, PS1 and PS2 mutations caused a highly significant increase in A beta 42 secretion in all mutant clones. Likewise, mutant but not wildtype PS1 transgenic mice showed significant overproduction of A beta 42 in the brain, and this effect was detectable as early as 2-4 months of age. Different PS mutations had differential effects on A beta generation. The extent of A beta 42 increase did not correlate with presenilin expression levels. Our data demonstrate that the presenilin mutations cause a dominant gain of function and may induce AD by enhancing A beta 42 production, thus promoting cerebral beta-amyloidosis.

1,361 citations

Journal ArticleDOI
TL;DR: These results provide validation of BACE1 as the major β-secretase in vivo and suggest that therapeutic inhibition of Bace1 for the treatment of Alzheimer's disease may be free of mechanism-based toxicity.
Abstract: Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation

1,067 citations


Cited by
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations

Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
TL;DR: Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.
Abstract: The distinct protein aggregates that are found in Alzheimer's, Parkinson's, Huntington's and prion diseases seem to cause these disorders. Small intermediates - soluble oligomers - in the aggregation process can confer synaptic dysfunction, whereas large, insoluble deposits might function as reservoirs of the bioactive oligomers. These emerging concepts are exemplified by Alzheimer's disease, in which amyloid beta-protein oligomers adversely affect synaptic structure and plasticity. Findings in other neurodegenerative diseases indicate that a broadly similar process of neuronal dysfunction is induced by diffusible oligomers of misfolded proteins.

4,499 citations

Journal ArticleDOI
TL;DR: A group of experts on aging and MCI from around the world in the fields of neurology, psychiatry, geriatrics, neuropsychology, neuroimaging, neuropathology, clinical trials, and ethics was convened to summarize the current state of the field of MCI.
Abstract: The field of aging and dementia is focusing on the characterization of the earliest stages of cognitive impairment. Recent research has identified a transitional state between the cognitive changes of normal aging and Alzheimer's disease (AD), known as mild cognitive impairment (MCI). Mild cognitive impairment refers to the clinical condition between normal aging and AD in which persons experience memory loss to a greater extent than one would expect for age, yet they do not meet currently accepted criteria for clinically probable AD. When these persons are observed longitudinally, they progress to clinically probable AD at a considerably accelerated rate compared with healthy age-matched individuals. Consequently, this condition has been recognized as suitable for possible therapeutic intervention, and several multicenter international treatment trials are under way. Because this is a topic of intense interest, a group of experts on aging and MCI from around the world in the fields of neurology, psychiatry, geriatrics, neuropsychology, neuroimaging, neuropathology, clinical trials, and ethics was convened to summarize the current state of the field of MCI. Participants reviewed the world scientific literature on aging and MCI and summarized the various topics with respect to available evidence on MCI. Diagnostic criteria and clinical outcomes of these subjects are available in the literature. Mild cognitive impairment is believed to be a high-risk condition for the development of clinically probable AD. Heterogeneity in the use of the term was recognized, and subclassifications were suggested. While no treatments are recommended for MCI currently, clinical trials regarding potential therapies are under way. Recommendations concerning ethical issues in the diagnosis and the management of subjects with MCI were made.

4,424 citations

Journal ArticleDOI
04 Oct 1996-Science
TL;DR: Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer β-amyloid (Aβ) precursor protein containing a Lys670 → Asn, Met671 → Leu mutation had normal learning and memory but showed impairment by 9 to 10 months of age.
Abstract: Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer beta-amyloid (Abeta) precursor protein containing a Lys670 --> Asn, Met671 --> Leu mutation had normal learning and memory in spatial reference and alternation tasks at 3 months of age but showed impairment by 9 to 10 months of age. A fivefold increase in Abeta(1-40) and a 14-fold increase in Abeta(1-42/43) accompanied the appearance of these behavioral deficits. Numerous Abeta plaques that stained with Congo red dye were present in cortical and limbic structures of mice with elevated amounts of Abeta. The correlative appearance of behavioral, biochemical, and pathological abnormalities reminiscent of Alzheimer's disease in these transgenic mice suggests new opportunities for exploring the pathophysiology and neurobiology of this disease.

4,327 citations