scispace - formally typeset
Search or ask a question
Author

Martin Cranage

Other affiliations: Salisbury University
Bio: Martin Cranage is an academic researcher from St George's, University of London. The author has contributed to research in topics: Simian immunodeficiency virus & Virus. The author has an hindex of 34, co-authored 84 publications receiving 4056 citations. Previous affiliations of Martin Cranage include Salisbury University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques, and the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed.
Abstract: DNA and modified vaccinia virus Ankara (MVA) are vaccine vehicles suitable and safe for use in humans. Here, by using a multicytotoxic T-lymphocyte (CTL) epitope gene and a DNA prime-MVA boost vaccination regimen, high levels of CTLs specific for a single simian immunodeficiency virus (SIV) gag-derived epitope were elicited in rhesus macaques. These vaccine-induced CTLs were capable of killing SIV-infected cells in vitro. Fluorescence-activated cell sorter analysis using soluble tetrameric major histocompatibility complex-peptide complexes showed that the vaccinated animals had 1 to 5% circulating CD8(+) lymphocytes specific for the vaccine epitope, frequencies comparable to those in SIV-infected monkeys. Upon intrarectal challenge with pathogenic SIVmac251, no evidence for protection was observed in at least two of the three vaccinated animals. This study does not attempt to define correlates of protective immunity nor design a protective vaccine against immunodeficiency viruses, but it demonstrates clearly that the DNA prime-MVA boost regimen is an effective protocol for induction of CTLs in macaques. It also shows that powerful tools for studying the role of CTLs in the control of SIV and human immunodeficiency virus infections are now available: epitope-based vaccines, a protocol for an effective induction of CTLs in primates, and a simple and sensitive method for quantitation of epitope-specific T cells. The advantages of the DNA prime-MVA boost regimen as well as the correlations of tetramer staining of peripheral blood lymphocytes with CTL killing in vitro and postchallenge control of viremia are discussed.

341 citations

Journal ArticleDOI
TL;DR: Protection in macaques immunized with a recombinant SIV envelope gp120 and core p27 vaccine was associated with significant increase in the iliac lymph nodes of lgA antibody–secreting cells to p27 and the chemokines RANTES and MIP–1β.
Abstract: Prevention of sexually transmitted HIV infection was investigated in macaques by immunization with a recombinant SIV (simian immunodeficiency virus) envelope gp120 and core p27 vaccine. In two independent series of experiments, we used the novel targeted iliac lymph node (TILN) route of immunization, aiming close to the iliac lymph nodes draining the genitorectal mucosa. Rectal challenge with the SIVmac 32H J5 molecular clone in two series induced total protection in four out of seven macaques immunized by TILN, compared with infection in 13 of 14 unimmunized macaques or immunized by other routes (P = 0.025). The remaining three macaques showed either a decrease in viral load (>90%) or transient viremia, indicating that all seven TILN–immunized macaques showed total or partial protection (P = 0.001). Protection was associated with significant increase in the iliac lymph nodes of lgA antibody–secreting cells to p27 (P < 0.02), CD8–suppressor factor (P< 0.01), and the chemokines RANTES and MIP–1β (P< 0.01).

312 citations

Journal ArticleDOI
TL;DR: Findings show that live-attenuated vaccine can confer protection against SIV in macaques, and the mechanism of this potent protection must be understood and reproduced by less hazardous means.

235 citations

Journal ArticleDOI
TL;DR: Using the macaque simian immunodeficiency virus (SIV) model, the protective potential of nef-specific CTLs, stimulated by vaccination, was examined in animals challenged with a high intravenous dose of the pathogenic simian vaccine-induced SIVmac251(32H)(pJ5).
Abstract: In order to develop a successful subunit vaccine against infection with the human immunodeficiency virus (HIV), protective immune effector functions must be identified. Until now, there has been only indirect evidence that HIV-specific cytotoxic T lymphocytes (CTLs) fulfill this role. Using the macaque simian immunodeficiency virus (SIV) model, the protective potential of nef-specific CTLs, stimulated by vaccination, was examined in animals challenged with a high intravenous dose of the pathogenic simian immunodeficiency virus, SIVmac251(32H)(pJ5). An inverse correlation was found between the vaccine-induced nef-specific CTL precursor frequency and virus load measured after challenge. In addition, the early decline in viraemia, observed in both vaccinated and unvaccinated control animals was associated with the development of virus-specific CTL activity and not with the presence of virus-specific neutralizing antibodies. The results imply that vaccines that stimulate strong CTL responses could protect against HIV infection.

202 citations

Journal ArticleDOI
TL;DR: It is shown that a deletion in the overlapping nef/3' long terminal repeat (LTR) region of the SIVmacC8 molecular clone can be repaired in vivo by a sequence duplication event and sequence evolution continues until the predicted amino acid sequence of the repair is virtually indistinguishable from that of the virulent wild type.
Abstract: Experimental evidence from the simian immunodeficiency virus (SIV) model of AIDS has shown that the nef gene is critical in the pathogenesis of AIDS. Consequently, nef is of considerable interest in both antiviral drug and vaccine development. Preliminary findings in two rhesus macaques indicated that a deletion of only 12 bp found in the overlapping nef/3' long terminal repeat (LTR) region (9501 to 9512) of the SIVmacC8 molecular clone was associated with reduced virus isolation frequency. We show that this deletion can be repaired in vivo by a sequence duplication event and that sequence evolution continues until the predicted amino acid sequence of the repair is virtually indistinguishable from that of the virulent wild type. These changes occurred concomitantly with reversion to virulence, evidenced by a high virus isolation frequency and load, decline in anti-p27 antibody, substantial reduction in the CD4/CD8 ratio, and development of opportunistic infections associated with AIDS. These findings clearly illustrate the capacity for repair of small attenuating deletions in primate lentiviruses and also strongly suggest that the region from 9501 to 9512 in the SIV nef/3' LTR region is of biological relevance. In addition, the ability of attenuated virus to revert to virulence raises fundamental questions regarding the nature of superinfection immunity.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that CD8 cells play a crucial role in suppressing SIV replication in vivo and are examined using an anti-CD8 monoclonal antibody, OKT8F.
Abstract: To determine the role of CD8(+) T cells in controlling simian immunodeficiency virus (SIV) replication in vivo, we examined the effect of depleting this cell population using an anti-CD8 monoclonal antibody, OKT8F. There was on average a 99.9% reduction of CD8 cells in peripheral blood in six infected Macaca mulatta treated with OKT8F. The apparent CD8 depletion started 1 h after antibody administration, and low CD8 levels were maintained until day 8. An increase in plasma viremia of one to three orders of magnitude was observed in five of the six macaques. The injection of a control antibody to an infected macaque did not induce a sustained viral load increase, nor did it significantly reduce the number of CD8(+) T cells. These results demonstrate that CD8 cells play a crucial role in suppressing SIV replication in vivo.

1,455 citations

Journal ArticleDOI
TL;DR: It is shown that in a patient whose early CTL response was focused on a highly immunodominant epitope in gp160, there was rapid elimination of the transmitted virus strain and selection for a virus population bearing amino acid changes at a single residue within this epitope, which conferred escape from recognition by epitope-specific CTL.
Abstract: The HIV-1-specific cytotoxic T lymphocyte (CTL) response is temporally associated with the decline in viremia during primary HIV-1 infection, but definitive evidence that it is of importance in virus containment has been lacking. Here we show that in a patient whose early CTL response was focused on a highly immunodominant epitope in gp160, there was rapid elimination of the transmitted virus strain and selection for a virus population bearing amino acid changes at a single residue within this epitope, which conferred escape from recognition by epitope-specific CTL. The magnitude (> 100-fold), kinetics (30–72 days from onset of symptoms) and genetic pathways of virus escape from CTL pressure were comparable to virus escape from antiretroviral therapy, indicating the biological significance of the CTL response in vivo. One aim of HIV-1 vaccines should thus be to elicit strong CTL responses against multiple codominant viral epitopes.

1,254 citations

Journal ArticleDOI
17 Jan 2002-Nature
TL;DR: The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine and elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector.
Abstract: Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.

1,240 citations

Journal ArticleDOI
TL;DR: None of the drug regimens evaluated reduced the rates of HIV-1 acquisition in an intention-to-treat analysis, and adherence to study drugs was low.
Abstract: BackgroundReproductive-age women need effective interventions to prevent the acquisition of human immunodeficiency virus type 1 (HIV-1) infection. MethodsWe conducted a randomized, placebo-controlled trial to assess daily treatment with oral tenofovir disoproxil fumarate (TDF), oral tenofovir–emtricitabine (TDF-FTC), or 1% tenofovir (TFV) vaginal gel as preexposure prophylaxis against HIV-1 infection in women in South Africa, Uganda, and Zimbabwe. HIV-1 testing was performed monthly, and plasma TFV levels were assessed quarterly. ResultsOf 12,320 women who were screened, 5029 were enrolled in the study. The rate of retention in the study was 91% during 5509 person-years of follow-up. A total of 312 HIV-1 infections occurred; the incidence of HIV-1 infection was 5.7 per 100 person-years. In the modified intention-to-treat analysis, the effectiveness was −49.0% with TDF (hazard ratio for infection, 1.49; 95% confidence interval [CI], 0.97 to 2.29), −4.4% with TDF-FTC (hazard ratio, 1.04; 95% CI, 0.73 to 1.4...

1,089 citations

Journal ArticleDOI
TL;DR: Current research is providing new insights into the function of mucosal tissues and the interplay of innate and adaptive immune responses that results in immune protection at mucosal surfaces that promise to accelerate the development and testing of new mucosal vaccines against many human diseases including HIV/AIDS.
Abstract: Most infectious agents enter the body at mucosal surfaces and therefore mucosal immune responses function as a first line of defence. Protective mucosal immune responses are most effectively induced by mucosal immunization through oral, nasal, rectal or vaginal routes, but the vast majority of vaccines in use today are administered by injection. As discussed in this Review, current research is providing new insights into the function of mucosal tissues and the interplay of innate and adaptive immune responses that results in immune protection at mucosal surfaces. These advances promise to accelerate the development and testing of new mucosal vaccines against many human diseases including HIV/AIDS.

1,080 citations