scispace - formally typeset
Search or ask a question
Author

Martin D. Kruskal

Bio: Martin D. Kruskal is an academic researcher from Rutgers University. The author has contributed to research in topics: Differential equation & Partial differential equation. The author has an hindex of 35, co-authored 62 publications receiving 16819 citations. Previous affiliations of Martin D. Kruskal include University of Exeter & Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for solving the initial value problem of the Korteweg-deVries equation is presented which is applicable to initial data that approach a constant sufficiently rapidly as
Abstract: A method for solving the initial-value problem of the Korteweg-deVries equation is presented which is applicable to initial data that approach a constant sufficiently rapidly as $|x|\ensuremath{\rightarrow}\ensuremath{\infty}$. The method can be used to predict exactly the "solitons," or solitary waves, which emerge from arbitrary initial conditions. Solutions that describe any finite number of solitons in interaction can be expressed in closed form.

3,896 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that, by adding appropriate numbers of particles trapped in the potential energy troughs, essentially arbitrary traveling wave solutions can be constructed, and the possible existence of such waves in an actual plasma will depend on factors ignored in this paper, as in most previous works, namely interparticle collisions and the stability of the solutions against various types of perturbations.
Abstract: The problem of a one-dimensional stationary nonlinear electrostatic wave in a plasma free from interparticle collisions is solved exactly by elementary means. It is demonstrated that, by adding appropriate numbers of particles trapped in the potential-energy troughs, essentially arbitrary traveling wave solutions can be constructed.When one passes to the limit of small-amplitude waves it turns out that the distribution function does not possess an expansion whose first term is linear in the amplitude, as is conventionally assumed. This disparity is associated with the trapped particles. It is possible, however, to salvage the usual linearized theory by admitting singular distribution functions. These, of course, do not exhibit Landau damping, which is associated with the restriction to well-behaved distribution functions.The possible existence of such waves in an actual plasma will depend on factors ignored in this paper, as in most previous works, namely interparticle collisions, and the stability of the solutions against various types of perturbations.

1,171 citations

Journal ArticleDOI
TL;DR: In this paper, the stability of static, highly conducting, fully ionized plasmas is investigated by means of an energy principle developed from one introduced by Lundquist, and the derivation of the principle and the conditions under which it applies are given.
Abstract: The problem of the stability of static, highly conducting, fully ionized plasmas is investigated by means of an energy principle developed from one introduced by Lundquist. The derivation of the principle and the conditions under which it applies are given. The method is applied to find complete stability criteria for two types of equilibrium situations. The first concerns plasmas which are completely separated from the magnetic field by an interface. The second is the general axisymmetric system.

1,146 citations

Journal ArticleDOI
TL;DR: In this paper, some new similarity reductions of the Boussinesq equation, which arises in several physical applications including shallow water waves and also is of considerable mathematical interest because it is a soliton equation solvable by inverse scattering, are presented.
Abstract: Some new similarity reductions of the Boussinesq equation, which arises in several physical applications including shallow water waves and also is of considerable mathematical interest because it is a soliton equation solvable by inverse scattering, are presented. These new similarity reductions, including some new reductions to the first, second, and fourth Painleve equations, cannot be obtained using the standard Lie group method for finding group‐invariant solutions of partial differential equations; they are determined using a new and direct method that involves no group theoretical techniques.

922 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the mechanism for a universal instability, the Arnold diffusion, which occurs in the oscillating systems having more than two degrees of freedom, which results in an irregular, or stochastic, motion of the system as if the latter were influenced by a random perturbation even though, in fact, the motion is governed by purely dynamical equations.

3,527 citations

Journal ArticleDOI
TL;DR: In this article, a systematic method is developed which allows one to identify certain important classes of evolution equations which can be solved by the method of inverse scattering, where the form of each evolution equation is characterized by the dispersion relation of its associated linearized version and an integro-differential operator.
Abstract: A systematic method is developed which allows one to identify certain important classes of evolution equations which can be solved by the method of inverse scattering The form of each evolution equation is characterized by the dispersion relation of its associated linearized version and an integro-differential operator A comprehensive presentation of the inverse scattering method is given and general features of the solution are discussed The relationship of the scattering theory and Backlund transformations is brought out In view of the role of the dispersion relation, the comparatively simple asymptotic states, and the similarity of the method itself to Fourier transforms, this theory can be considered a natural extension of Fourier analysis to nonlinear problems

2,746 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications, including shape invariance and operator transformations, and show that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials.

2,688 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems, particularly focusing on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian.
Abstract: This Colloquium gives an overview of recent theoretical and experimental progress in the area of nonequilibrium dynamics of isolated quantum systems There is particularly a focus on quantum quenches: the temporal evolution following a sudden or slow change of the coupling constants of the system Hamiltonian Several aspects of the slow dynamics in driven systems are discussed and the universality of such dynamics in gapless systems with specific focus on dynamics near continuous quantum phase transitions is emphasized Recent progress on understanding thermalization in closed systems through the eigenstate thermalization hypothesis is also reviewed and relaxation in integrable systems is discussed Finally key experiments probing quantum dynamics in cold atom systems are overviewed and put into the context of our current theoretical understanding

2,340 citations