scispace - formally typeset
Search or ask a question
Author

Martin Ebinger

Bio: Martin Ebinger is an academic researcher from Boston Children's Hospital. The author has contributed to research in topics: Medicine & Transplantation. The author has an hindex of 31, co-authored 115 publications receiving 8724 citations. Previous affiliations of Martin Ebinger include Heidelberg University & University of Tübingen.


Papers
More filters
Journal ArticleDOI
09 Feb 2012-Nature
TL;DR: The presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles, suggesting that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
Abstract: Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.

2,091 citations

Journal ArticleDOI
Dominik Sturm1, Hendrik Witt1, Hendrik Witt2, Volker Hovestadt1, Dong Anh Khuong-Quang3, David T.W. Jones1, Carolin Konermann1, Elke Pfaff1, Martje Tönjes1, Martin Sill1, Sebastian Bender1, Marcel Kool1, Marc Zapatka1, Natalia Becker1, Manuela Zucknick1, Thomas Hielscher1, Xiaoyang Liu3, Adam M. Fontebasso4, Marina Ryzhova, Steffen Albrecht4, Karine Jacob3, Marietta Wolter5, Martin Ebinger6, Martin U. Schuhmann6, Timothy E. Van Meter7, Michael C. Frühwald8, Holger Hauch, Arnulf Pekrun, Bernhard Radlwimmer1, Tim Niehues9, Gregor Von Komorowski, Matthias Dürken, Andreas E. Kulozik2, Jenny Madden10, Andrew M. Donson10, Nicholas K. Foreman10, Rachid Drissi11, Maryam Fouladi11, Wolfram Scheurlen9, Andreas von Deimling1, Andreas von Deimling2, Camelia M. Monoranu12, Wolfgang Roggendorf12, Christel Herold-Mende2, Andreas Unterberg2, Christof M. Kramm13, Jörg Felsberg5, Christian Hartmann14, Benedikt Wiestler2, Wolfgang Wick2, Till Milde1, Till Milde2, Olaf Witt2, Olaf Witt1, Anders Lindroth1, Jeremy Schwartzentruber3, Damien Faury3, Adam Fleming3, Magdalena Zakrzewska15, Pawel P. Liberski15, Krzysztof Zakrzewski16, Peter Hauser17, Miklós Garami17, Almos Klekner18, László Bognár18, Sorana Morrissy19, Florence M.G. Cavalli19, Michael D. Taylor19, Peter van Sluis20, Jan Koster20, Rogier Versteeg20, Richard Volckmann20, Tom Mikkelsen21, Kenneth Aldape22, Guido Reifenberger5, V. Peter Collins23, Jacek Majewski3, Andrey Korshunov1, Peter Lichter1, Christoph Plass1, Nada Jabado3, Stefan M. Pfister1, Stefan M. Pfister2 
TL;DR: It is demonstrated that each H3F3A mutation defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and that they are mutually exclusive with IDH1 mutations, which characterize a third mutation-defined subgroup.

1,557 citations

Journal ArticleDOI
David T.W. Jones1, Natalie Jäger1, Marcel Kool1, Thomas Zichner2, Barbara Hutter1, Marc Sultan3, Yoon Jae Cho4, Trevor J. Pugh5, Volker Hovestadt1, Adrian M. Stütz2, Tobias Rausch2, Hans-Jörg Warnatz3, Marina Ryzhova, Sebastian Bender1, Dominik Sturm1, Sabrina Pleier1, Huriye Cin1, Elke Pfaff1, Laura Sieber1, Andrea Wittmann1, Marc Remke1, Hendrik Witt6, Hendrik Witt1, Sonja Hutter1, Theophilos Tzaridis1, Joachim Weischenfeldt2, Benjamin Raeder2, Meryem Avci3, Vyacheslav Amstislavskiy3, Marc Zapatka1, Ursula D. Weber1, Qi Wang1, Bärbel Lasitschka1, Cynthia C. Bartholomae1, Manfred Schmidt1, Christof von Kalle1, Volker Ast1, Chris Lawerenz1, Jürgen Eils1, Rolf Kabbe1, Vladimir Benes2, Peter van Sluis7, Jan Koster7, Richard Volckmann7, David Shih, Matthew J. Betts6, Robert B. Russell6, Simona Coco, Gian Paolo Tonini, Ulrich Schüller8, Volkmar Hans, Norbert Graf9, Yoo-Jin Kim9, Camelia M. Monoranu, Wolfgang Roggendorf, Andreas Unterberg6, Christel Herold-Mende6, Till Milde1, Till Milde6, Andreas E. Kulozik6, Andreas von Deimling6, Andreas von Deimling1, Olaf Witt1, Olaf Witt6, Eberhard Maass, Jochen Rössler, Martin Ebinger, Martin U. Schuhmann, Michael C. Frühwald10, Martin Hasselblatt, Nada Jabado11, Stefan Rutkowski12, André O. von Bueren12, Daniel Williamson13, Steven C. Clifford13, Martin G. McCabe14, Martin G. McCabe15, V. Peter Collins14, Stephan Wolf1, Stefan Wiemann1, Hans Lehrach3, Benedikt Brors1, Wolfram Scheurlen10, Jörg Felsberg16, Guido Reifenberger16, Paul A. Northcott, Michael D. Taylor, Matthew Meyerson17, Matthew Meyerson5, Scott L. Pomeroy10, Scott L. Pomeroy5, Marie-Laure Yaspo3, Jan O. Korbel2, Andrey Korshunov1, Andrey Korshunov6, Roland Eils1, Roland Eils6, Stefan M. Pfister1, Stefan M. Pfister6, Peter Lichter1 
02 Aug 2012-Nature
TL;DR: An integrative deep-sequencing analysis of 125 tumour–normal pairs enhances the understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provides several potential targets for new therapeutics, especially for Group 3 and 4 patients.
Abstract: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.

775 citations

Journal ArticleDOI
Paul A. Northcott1, Paul A. Northcott2, Ivo Buchhalter1, Ivo Buchhalter3, A. Sorana Morrissy, Volker Hovestadt1, Joachim Weischenfeldt4, Tobias Ehrenberger5, Susanne Gröbner1, Maia Segura-Wang6, Thomas Zichner6, Vasilisa A. Rudneva, Hans-Jörg Warnatz7, Nikos Sidiropoulos4, Aaron H. Phillips2, Steven E. Schumacher8, Kortine Kleinheinz1, Sebastian M. Waszak6, Serap Erkek1, Serap Erkek6, David T.W. Jones1, Barbara C. Worst1, Marcel Kool1, Marc Zapatka1, Natalie Jäger1, Lukas Chavez1, Barbara Hutter1, Matthias Bieg1, Nagarajan Paramasivam3, Nagarajan Paramasivam1, Michael Heinold1, Michael Heinold3, Zuguang Gu1, Naveed Ishaque1, Christina Jäger-Schmidt1, Charles D. Imbusch1, Alke Jugold1, Daniel Hübschmann3, Daniel Hübschmann1, Daniel Hübschmann9, Thomas Risch7, Vyacheslav Amstislavskiy7, Francisco German Rodriguez Gonzalez4, Ursula D. Weber1, Stephan Wolf1, Giles W. Robinson2, Xin Zhou2, Gang Wu2, David Finkelstein2, Yanling Liu2, Florence M.G. Cavalli, Betty Luu, Vijay Ramaswamy, Xiaochong Wu, Jan Koster, Marina Ryzhova, Yoon Jae Cho10, Scott L. Pomeroy11, Christel Herold-Mende3, Martin U. Schuhmann12, Martin Ebinger, Linda M. Liau13, Jaume Mora14, Roger E. McLendon15, Nada Jabado16, Toshihiro Kumabe17, Eric Chuah18, Yussanne Ma18, Richard A. Moore18, Andrew J. Mungall18, Karen Mungall18, Nina Thiessen18, Kane Tse18, Tina Wong18, Steven J.M. Jones18, Olaf Witt9, Till Milde9, Andreas von Deimling9, David Capper9, Andrey Korshunov9, Marie-Laure Yaspo7, Richard W. Kriwacki2, Amar Gajjar2, Jinghui Zhang2, Rameen Beroukhim8, Ernest Fraenkel5, Jan O. Korbel6, Benedikt Brors1, Matthias Schlesner1, Roland Eils3, Roland Eils1, Marco A. Marra18, Stefan M. Pfister9, Stefan M. Pfister1, Michael D. Taylor19, Peter Lichter1 
19 Jul 2017-Nature
TL;DR: The application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.
Abstract: Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.

706 citations

Journal ArticleDOI
David T.W. Jones1, Barbara Hutter1, Natalie Jäger1, Andrey Korshunov2, Andrey Korshunov1, Marcel Kool1, Hans-Jörg Warnatz3, Thomas Zichner, Sally R. Lambert4, Marina Ryzhova5, Dong Anh Khuong Quang6, Adam M. Fontebasso6, Adrian M. Stütz, Sonja Hutter1, Marc Zuckermann1, Dominik Sturm1, Jan Gronych1, Bärbel Lasitschka1, Sabine Schmidt1, Huriye Seker-Cin1, Hendrik Witt1, Hendrik Witt2, Marc Sultan3, Meryem Ralser3, Paul A. Northcott1, Volker Hovestadt1, Sebastian Bender1, Elke Pfaff1, Sebastian Stark1, Damien Faury6, Jeremy Schwartzentruber6, Jacek Majewski6, Ursula D. Weber1, Marc Zapatka1, Benjamin Raeder, Matthias Schlesner1, Catherine L. Worth3, Cynthia C. Bartholomae1, Christof von Kalle1, Charles D. Imbusch1, S. Radomski1, S. Radomski2, Chris Lawerenz1, Peter van Sluis7, Jan Koster7, Richard Volckmann7, Rogier Versteeg7, Hans Lehrach3, Camelia M. Monoranu8, Beate Winkler8, Andreas Unterberg2, Christel Herold-Mende9, Till Milde1, Till Milde2, Andreas E. Kulozik2, Martin Ebinger10, Martin U. Schuhmann10, Yoon Jae Cho11, Scott L. Pomeroy12, Scott L. Pomeroy13, Andreas von Deimling1, Andreas von Deimling2, Olaf Witt2, Olaf Witt1, Michael D. Taylor14, Stephan Wolf1, Matthias A. Karajannis15, Charles G. Eberhart16, Wolfram Scheurlen17, Martin Hasselblatt18, Keith L. Ligon13, Mark W. Kieran13, Jan O. Korbel, Marie-Laure Yaspo3, Benedikt Brors1, Jörg Felsberg19, Guido Reifenberger19, V. Peter Collins4, Nada Jabado6, Nada Jabado20, Roland Eils1, Roland Eils2, Peter Lichter1 
TL;DR: Recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors and new BRAF-activating changes were observed, indicating that pilocytic astrocytoma is predominantly a single-pathway disease.
Abstract: Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

657 citations


Cited by
More filters
Journal ArticleDOI
29 Mar 2013-Science
TL;DR: This work has revealed the genomic landscapes of common forms of human cancer, which consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of "hills" (Genes altered infrequently).
Abstract: Over the past decade, comprehensive sequencing efforts have revealed the genomic landscapes of common forms of human cancer. For most cancer types, this landscape consists of a small number of “mountains” (genes altered in a high percentage of tumors) and a much larger number of “hills” (genes altered infrequently). To date, these studies have revealed ~140 genes that, when altered by intragenic mutations, can promote or “drive” tumorigenesis. A typical tumor contains two to eight of these “driver gene” mutations; the remaining mutations are passengers that confer no selective growth advantage. Driver genes can be classified into 12 signaling pathways that regulate three core cellular processes: cell fate, cell survival, and genome maintenance. A better understanding of these pathways is one of the most pressing needs in basic cancer research. Even now, however, our knowledge of cancer genomes is sufficient to guide the development of more effective approaches for reducing cancer morbidity and mortality.

6,441 citations

Journal ArticleDOI
TL;DR: The power of ComplexHeatmap is demonstrated to easily reveal patterns and correlations among multiple sources of information with four real-world datasets.
Abstract: Summary: Parallel heatmaps with carefully designed annotation graphics are powerful for efficient visualization of patterns and relationships among high dimensional genomic data. Here we present the ComplexHeatmap package that provides rich functionalities for customizing heatmaps, arranging multiple parallel heatmaps and including user-defined annotation graphics. We demonstrate the power of ComplexHeatmap to easily reveal patterns and correlations among multiple sources of information with four real-world datasets. Availability and Implementation: The ComplexHeatmap package and documentation are freely available from the Bioconductor project: http://www.bioconductor.org/packages/devel/bioc/html/ComplexHeatmap.html. Contact: m.schlesner@dkfz.de Supplementary information: Supplementary data are available at Bioinformatics online.

4,733 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: It is proposed that DNA methylation age measures the cumulative effect of an epigenetic maintenance system, and can be used to address a host of questions in developmental biology, cancer and aging research.
Abstract: It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.

4,233 citations

Journal ArticleDOI
TL;DR: Chimeric antigen receptor-modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL and was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed.
Abstract: A total of 30 children and adults received CTL019. Complete remission was achieved in 27 patients (90%), including 2 patients with blinatumomab-refractory disease and 15 who had undergone stem-cell transplantation. CTL019 cells proliferated in vivo and were detectable in the blood, bone marrow, and cerebrospinal fluid of patients who had a response. Sustained remission was achieved with a 6-month event-free survival rate of 67% (95% confidence interval [CI], 51 to 88) and an overall survival rate of 78% (95% CI, 65 to 95). At 6 months, the probability that a patient would have persistence of CTL019 was 68% (95% CI, 50 to 92) and the probability that a patient would have relapse-free B-cell aplasia was 73% (95% CI, 57 to 94). All the patients had the cytokine-release syndrome. Severe cytokine-release syndrome, which developed in 27% of the patients, was associated with a higher disease burden before infusion and was effectively treated with the anti–interleukin-6 receptor antibody tocilizumab. CONCLUSIONS Chimeric antigen receptor–modified T-cell therapy against CD19 was effective in treating relapsed and refractory ALL. CTL019 was associated with a high remission rate, even among patients for whom stem-cell transplantation had failed, and durable remissions up to 24 months were observed. (Funded by Novartis and others; CART19 ClinicalTrials.gov numbers, NCT01626495 and NCT01029366.)

4,208 citations