scispace - formally typeset
Search or ask a question
Author

Martin Grötschel

Bio: Martin Grötschel is an academic researcher from University of Bonn. The author has contributed to research in topics: Travelling salesman problem & Polytope. The author has an hindex of 14, co-authored 31 publications receiving 3401 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The method yields polynomial algorithms for vertex packing in perfect graphs, for the matching and matroid intersection problems, for optimum covering of directed cuts of a digraph, and for the minimum value of a submodular set function.
Abstract: L. G. Khachiyan recently published a polynomial algorithm to check feasibility of a system of linear inequalities. The method is an adaptation of an algorithm proposed by Shor for non-linear optimization problems. In this paper we show that the method also yields interesting results in combinatorial optimization. Thus it yields polynomial algorithms for vertex packing in perfect graphs; for the matching and matroid intersection problems; for optimum covering of directed cuts of a digraph; for the minimum value of a submodular set function; and for other important combinatorial problems. On the negative side, it yields a proof that weighted fractional chromatic number is NP-hard.

2,170 citations

Journal ArticleDOI
TL;DR: It is proved that all subtour-elimination and all comb inequalities define facets of the symmetric travelling salesman polytope.
Abstract: We investigate several classes of inequalities for the symmetric travelling salesman problem with respect to their facet-defining properties for the associated polytope. A new class of inequalities called comb inequalities is derived and their number shown to grow much faster with the number of cities than the exponentially growing number of subtour-elimination constraints. The dimension of the travelling salesman polytope is calculated and several inequalities are shown to define facets of the polytope. In part II (“On the travelling salesman problem II: Lifting theorems and facets”) we prove that all subtour-elimination and all comb inequalities define facets of the symmetric travelling salesman polytope.

217 citations

Journal ArticleDOI
TL;DR: Four lifting theorems are derived that permit a proof that all subtour-elimination as well as comb inequalities define facets of the convex hull of tours of then-city travelling salesman problem, wheren is an arbitrary integer.
Abstract: Four lifting theorems are derived for the symmetric travelling salesman polytope. They provide constructions and state conditions under which a linear inequality which defines a facet of then-city travelling salesman polytope retains its facetial property for the (n + m)-city travelling salesman polytope, wherem ≥ 1 is an arbitrary integer. In particular, they permit a proof that all subtour-elimination as well as comb inequalities define facets of the convex hull of tours of then-city travelling salesman problem, wheren is an arbitrary integer.

153 citations

Book ChapterDOI
01 Jan 1980
TL;DR: It is reported how the shortest roundtrip through 120 German cities was found using a commercial linear programming code and adding facetial cutting planes in an interactive way.
Abstract: The polytope associated with the symmetric travelling salesman problem has been intensively studied recently (cf. [7, 10, 11]). In this note we demonstrate how the knowledge of the facets of this polytope can be utilized to solve large-scale travelling salesman problems. In particular, we report how the shortest roundtrip through 120 German cities was found using a commercial linear programming code and adding facetial cutting planes in an interactive way.

106 citations


Cited by
More filters
Journal ArticleDOI
Narendra Karmarkar1
TL;DR: It is proved that given a polytopeP and a strictly interior point a εP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property: the ratio of the radius of the smallest sphere with center a′, containingP′ to theradius of the largest sphere withCenter a′ contained inP′ isO(n).
Abstract: We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requiresO(n 3.5 L) arithmetic operations onO(L) bit numbers, wheren is the number of variables andL is the number of bits in the input. The running-time of this algorithm is better than the ellipsoid algorithm by a factor ofO(n 2.5). We prove that given a polytopeP and a strictly interior point a eP, there is a projective transformation of the space that mapsP, a toP′, a′ having the following property. The ratio of the radius of the smallest sphere with center a′, containingP′ to the radius of the largest sphere with center a′ contained inP′ isO(n). The algorithm consists of repeated application of such projective transformations each followed by optimization over an inscribed sphere to create a sequence of points which converges to the optimal solution in polynomial time.

4,806 citations

Journal ArticleDOI
TL;DR: This algorithm gives the first substantial progress in approximating MAX CUT in nearly twenty years, and represents the first use of semidefinite programming in the design of approximation algorithms.
Abstract: We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least.87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of 1/2 for MAX CUT and 3/4 or MAX 2SAT. Slight extensions of our analysis lead to a.79607-approximation algorithm for the maximum directed cut problem (MAX DICUT) and a.758-approximation algorithm for MAX SAT, where the best previously known approximation algorithms had performance guarantees of 1/4 and 3/4, respectively. Our algorithm gives the first substantial progress in approximating MAX CUT in nearly twenty years, and represents the first use of semidefinite programming in the design of approximation algorithms.

3,932 citations

Journal Article
TL;DR: This paper proposes to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation and presents a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems.
Abstract: Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.

2,292 citations

Book
05 Aug 2002
TL;DR: Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science, and it will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.
Abstract: The theory of directed graphs has developed enormously over recent decades, yet this book (first published in 2000) remains the only book to cover more than a small fraction of the results. New research in the field has made a second edition a necessity. Substantially revised, reorganised and updated, the book now comprises eighteen chapters, carefully arranged in a straightforward and logical manner, with many new results and open problems. As well as covering the theoretical aspects of the subject, with detailed proofs of many important results, the authors present a number of algorithms, and whole chapters are devoted to topics such as branchings, feedback arc and vertex sets, connectivity augmentations, sparse subdigraphs with prescribed connectivity, and also packing, covering and decompositions of digraphs. Throughout the book, there is a strong focus on applications which include quantum mechanics, bioinformatics, embedded computing, and the travelling salesman problem. Detailed indices and topic-oriented chapters ease navigation, and more than 650 exercises, 170 figures and 150 open problems are included to help immerse the reader in all aspects of the subject. Digraphs is an essential, comprehensive reference for undergraduate and graduate students, and researchers in mathematics, operations research and computer science. It will also prove invaluable to specialists in related areas, such as meteorology, physics and computational biology.

1,938 citations