scispace - formally typeset
Search or ask a question
Author

Martin Guilliams

Bio: Martin Guilliams is an academic researcher from Ghent University. The author has contributed to research in topics: Macrophage & Inflammation. The author has an hindex of 51, co-authored 104 publications receiving 17154 citations. Previous affiliations of Martin Guilliams include French Institute of Health and Medical Research & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
24 Jan 2013-Immunity
TL;DR: A fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression is reported, establishing that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly 6C(-) cells and that the abundance of Ly6 C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.

2,302 citations

23 May 2013
TL;DR: In this paper, a fate-mapping study of the macrophage compartment is presented, taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression.
Abstract: Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.

1,691 citations

Journal ArticleDOI
TL;DR: This Opinion article suggests that the mononuclear phagocyte system can be classified primarily by their ontogeny and secondarily by their location, function and phenotype, which permits a more robust classification during both steady-state and inflammatory conditions.
Abstract: The mononuclear phagocyte system (MPS) has historically been categorized into monocytes, dendritic cells and macrophages on the basis of functional and phenotypical characteristics. However, considering that these characteristics are often overlapping, the distinction between and classification of these cell types has been challenging. In this Opinion article, we propose a unified nomenclature for the MPS. We suggest that these cells can be classified primarily by their ontogeny and secondarily by their location, function and phenotype. We believe that this system permits a more robust classification during both steady-state and inflammatory conditions, with the benefit of spanning different tissues and across species.

1,404 citations

Journal ArticleDOI
15 Mar 2016-Immunity
TL;DR: The exact nature of the embryonic progenitors that give rise to adult tissue-resident macrophages is still debated, and the mechanisms enabling macrophage population maintenance in the adult are undefined.

1,148 citations

Journal ArticleDOI
15 Apr 2008-Blood
TL;DR: In this article, the authors identified two distinct MDSC subfractions with clear morphologic, molecular, and functional differences, i.e., low-density polymorphonuclear cells (PMN-MDSCs) and high-density neutrophils.

1,066 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit are discussed.
Abstract: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.

5,811 citations

Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations

Journal ArticleDOI
TL;DR: This work considers myeloid cells as an intricately connected, complex, single system and focuses on how tumours manipulate the myeloids system to evade the host immune response.
Abstract: Here, the authors discuss how the immune activities of myeloid cells, such as macrophages and dendritic cells, are affected by the immunosuppressive tumour environment. They propose that tumours can evade the immune system by promoting aberrant differentiation and function of the entire myeloid system.

2,966 citations

Journal ArticleDOI
05 Feb 2010-Science
TL;DR: The current understanding of myeloid lineage development is reviewed and the developmental pathways and cues that drive differentiation are described, which are central to the development of immunologic memory and tolerance in mice.
Abstract: Monocytes and macrophages are critical effectors and regulators of inflammation and the innate immune response, the immediate arm of the immune system. Dendritic cells initiate and regulate the highly pathogen-specific adaptive immune responses and are central to the development of immunologic memory and tolerance. Recent in vivo experimental approaches in the mouse have unveiled new aspects of the developmental and lineage relationships among these cell populations. Despite this, the origin and differentiation cues for many tissue macrophages, monocytes, and dendritic cell subsets in mice, and the corresponding cell populations in humans, remain to be elucidated.

2,832 citations

Journal ArticleDOI
TL;DR: The cellular sources of these cytokines, receptor signaling pathways, and induced markers and gene signatures are reviewed and the concept of macrophage activation in the context of the immune response is revisit.
Abstract: Macrophages are innate immune cells with well-established roles in the primary response to pathogens, but also in tissue homeostasis, coordination of the adaptive immune response, inflammation, resolution, and repair. These cells recognize danger signals through receptors capable of inducing specialized activation programs. The classically known macrophage activation is induced by IFN-gamma, which triggers a harsh proinflammatory response that is required to kill intracellular pathogens. Macrophages also undergo alternative activation by IL-4 and IL-13, which trigger a different phenotype that is important for the immune response to parasites. Here we review the cellular sources of these cytokines, receptor signaling pathways, and induced markers and gene signatures. We draw attention to discrepancies found between mouse and human models of alternative activation. The evidence for in vivo alternative activation of macrophages is also analyzed, with nematode infection as prototypic disease. Finally, we revisit the concept of macrophage activation in the context of the immune response.

2,515 citations