scispace - formally typeset
Search or ask a question
Author

Martin Haulena

Other affiliations: Ontario Veterinary College
Bio: Martin Haulena is an academic researcher from The Marine Mammal Center. The author has contributed to research in topics: Zalophus californianus & Harbor seal. The author has an hindex of 21, co-authored 91 publications receiving 2389 citations. Previous affiliations of Martin Haulena include Ontario Veterinary College.


Papers
More filters
Journal ArticleDOI
06 Jan 2000-Nature
TL;DR: Findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.
Abstract: Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin1 that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.

794 citations

Journal ArticleDOI
TL;DR: Evidence is presented that the cause of the disease is transmissible from disease-affected animals to apparently healthy individuals, that the disease-causing agent is a virus-sized microorganism, and that the best candidate viral taxon, the sea star-associated densovirus (SSaDV), is in greater abundance in diseased than in healthy sea stars.
Abstract: Populations of at least 20 asteroid species on the Northeast Pacific Coast have recently experienced an extensive outbreak of sea-star (asteroid) wasting disease (SSWD). The disease leads to behavioral changes, lesions, loss of turgor, limb autotomy, and death characterized by rapid degradation ("melting"). Here, we present evidence from experimental challenge studies and field observations that link the mass mortalities to a densovirus (Parvoviridae). Virus-sized material (i.e., <0.2 μm) from symptomatic tissues that was inoculated into asymptomatic asteroids consistently resulted in SSWD signs whereas animals receiving heat-killed (i.e., control) virus-sized inoculum remained asymptomatic. Viral metagenomic investigations revealed the sea star-associated densovirus (SSaDV) as the most likely candidate virus associated with tissues from symptomatic asteroids. Quantification of SSaDV during transmission trials indicated that progression of SSWD paralleled increased SSaDV load. In field surveys, SSaDV loads were more abundant in symptomatic than in asymptomatic asteroids. SSaDV could be detected in plankton, sediments and in nonasteroid echinoderms, providing a possible mechanism for viral spread. SSaDV was detected in museum specimens of asteroids from 1942, suggesting that it has been present on the North American Pacific Coast for at least 72 y. SSaDV is therefore the most promising candidate disease agent responsible for asteroid mass mortality.

249 citations

Journal ArticleDOI
TL;DR: Eighty-one Californian sea lions with signs of domoic acid toxicity stranded along the coast of California in 1998 and in 2000, a further 184 sea lions stranded with similar clinical signs, but the strandings occurred both during detectable algal blooms and after the blooms had subsided.
Abstract: Eighty-one Californian sea lions (Zalophus californianus) with signs of domoic acid toxicity stranded along the coast of California in 1998 when there were blooms of the domoic acid-producing alga Pseudonitzschia australis off-shore. In 2000, a further 184 sea lions stranded with similar clinical signs, but the strandings occurred both during detectable algal blooms and after the blooms had subsided. The clinical signs in these 265 Californian sea lions included seizures, ataxia, head weaving, decreased responsiveness to stimuli and scratching behaviour. Affected animals had high haematocrits, and eosinophil counts, and high activities of serum creatine kinase. They were treated supportively by using fluid therapy, diazepam, lorazepam and phenobarbitone. Fifty-five of the 81 sea lions (68 per cent) affected in 1998 and 81 of the 184 (44 per cent) affected in 2000 died despite the treatment. Three of the 23 sea lions which survived in 1998 were tracked with satellite and radiotransmitters; they travelled as far south as San Miguel Island, California, and survived for at least three months. Eleven of the 129 animals which were released stranded within four months of being released.

207 citations

Journal ArticleDOI
TL;DR: It is indicated that domoic acid causes chronic damage to California sea lions and that these health effects are increasing, and a second novel neurological syndrome characterized by epilepsy is described here associated with chronic consequences of previous sub-lethal exposure to the toxin.
Abstract: Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing.

199 citations

Journal ArticleDOI
TL;DR: It is recommended that studies using marked animals standardise their reports, with added detail on methodology, monitoring and sampling design, and address practices used to minimise the impact of marking on marine mammals.
Abstract: Wildlife research often requires marking and tagging animals to collect data on survival, reproduction, movement, behaviour and physiology. Identification of individual marine mammals can be carried out using tags, brands, paint, dye, photogrammetry, telemetry and other techniques. An analysis of peer-reviewed articles published from January 1980 to April 2011 addressing the effects of marking revealed a preponderance of studies focussed on short-term effects such as injuries and behavioural changes. Some marking techniques were reported to cause pain and to change swimming and haul-out behaviour, maternal attendance, and duration of foraging trips. However, marking has typically not been found to affect survival. No published research has addressed other possible long-term effects of marking related to injuries or pain responses. Studies of the more immediate effects of marking (mostly related to externally attached devices such as radio-transmitters) have shown a variety of different types and magnitudes of responses. It is important to note that studies failing to find treament differences are less likely to be published, meaning that the present and any other reviews based on published literature may be a biased sample of all research conducted on the topic. Publishing results that found no or low impacts (i.e. best practices) as well as those that found significant impacts on animals should both be encouraged. Future research under more controlled conditions is required to document acute effects of marking, including injury and pain, and to better understand longer-term effects on health, reproduction and survival. We recommend that studies using marked animals standardise their reports, with added detail on methodology, monitoring and sampling design, and address practices used to minimise the impact of marking on marine mammals.

108 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a global assessment of the effects of inorganic nitrogen pollution in aquatic ecosystems is presented, with detailed multi-scale data, and three major environmental problems: (1) increasing the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) stimulating or enhancing the development, maintenance and proliferation of primary producers, leading to eutrophication of aquatic ecosystems; (3) reaching toxic levels that impair the ability of aquatic animals to survive, grow and reproduce.

1,753 citations

Journal ArticleDOI
01 Feb 1963-Nature
TL;DR: Experimental NeurologyBy Prof. Paul Glees.
Abstract: Experimental Neurology By Prof Paul Glees Pp xii + 532 (Oxford: Clarendon Press; London: Oxford University Press, 1961) 75s net

1,559 citations

Journal ArticleDOI

1,380 citations

Journal ArticleDOI
TL;DR: The Effects of Harmful Algal Blooms on Aquatic Organisms: Vol. 10, No. 2, pp. 113-390 as mentioned in this paper was the first publication of this article.
Abstract: (2002). The Effects of Harmful Algal Blooms on Aquatic Organisms. Reviews in Fisheries Science: Vol. 10, No. 2, pp. 113-390.

1,242 citations

Journal ArticleDOI
13 May 2009-Nature
TL;DR: Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea.
Abstract: Marine diatoms rose to prominence about 100 million years ago and today generate most of the organic matter that serves as food for life in the sea. They exist in a dilute world where compounds essential for growth are recycled and shared, and they greatly influence global climate, atmospheric carbon dioxide concentration and marine ecosystem function. How these essential organisms will respond to the rapidly changing conditions in today's oceans is critical for the health of the environment and is being uncovered by studies of their genomes.

809 citations