Author

# Martin Hoefer

Other affiliations: Ohio University, University of Konstanz, RWTH Aachen University ...read more

Bio: Martin Hoefer is an academic researcher from Goethe University Frankfurt. The author has contributed to research in topics: Nash equilibrium & Approximation algorithm. The author has an hindex of 28, co-authored 165 publications receiving 3488 citations. Previous affiliations of Martin Hoefer include Ohio University & University of Konstanz.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: The conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts is proved and an Integer Linear Programming formulation is given.

Abstract: Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, particularly in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomerative approach.

1,053 citations

••

[...]

TL;DR: It is proved the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and an Integer Linear Programming formulation is given.

Abstract: Modularity is a recently introduced quality measure for graph clusterings. It has immediately received considerable attention in several disciplines, and in particular in the complex systems literature, although its properties are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer Linear Programming formulation. This is complemented by first insights into the behavior and performance of the commonly applied greedy agglomaration approach.

215 citations

•

[...]

TL;DR: It is shown that the corresponding decision version of modularity maximization is NP-complete in the strong sense, by showing that any efficient algorithm is only heuristic and yields suboptimal partitions on many instances.

Abstract: Several algorithms have been proposed to compute partitions of networks into communities that score high on a graph clustering index called modularity. While publications on these algorithms typically contain experimental evaluations to emphasize the plausibility of results, none of these algorithms has been shown to actually compute optimal partitions. We here settle the unknown complexity status of modularity maximization by showing that the corresponding decision version is NP-complete in the strong sense. As a consequence, any efficient, i.e. polynomial-time, algorithm is only heuristic and yields suboptimal partitions on many instances.

196 citations

••

[...]

TL;DR: A novel LP formulation for combinatorial auctions with conflict graph using a non-standard graph parameter, the so-called inductive independence number, is suggested to bypass the well-known lower bound of Ω(n1-ε) on the approximability of independent set in general graphs with n nodes (bidders).

Abstract: We study combinatorial auctions for the secondary spectrum market. In this market, short-term licenses shall be given to wireless nodes for communication in their local neighborhood. In contrast to the primary market, channels can be assigned to multiple bidders, provided that the corresponding devices are well separated such that the interference is sufficiently low. Interference conflicts are described in terms of a conflict graph in which the nodes represent the bidders and the edges represent conflicts such that the feasible allocations for a channel correspond to the independent sets in the conflict graph.In this paper, we suggest a novel LP formulation for combinatorial auctions with conflict graph using a non-standard graph parameter, the so-called inductive independence number. Taking into account this parameter enables us to bypass the well-known lower bound of Ω(n1-e) on the approximability of independent set in general graphs with n nodes (bidders). We achieve significantly better approximation results by showing that interference constraints for wireless networks yield conflict graphs with bounded inductive independence number.Our framework covers various established models of wireless communication, e.g., the protocol or the physical model. For the protocol model, we achieve an O(√k)-approximation, where k is the number of available channels. For the more realistic physical model, we achieve an O(√k log2n) approximation based on edge-weighted conflict graphs. Combining our approach with the LP-based framework of Lavi and Swamy, we obtain incentive compatible mechanisms for general bidders with arbitrary valuations on bundles of channels specified in terms of demand oracles.

58 citations

••

[...]

TL;DR: In this article, the existence and cost of exact and approximate pure-strategy Nash equilibria were studied for combinatorial covering and facility location problems. But the prices of anarchy and stability are in @Q(k) and deciding the existence of a pure Nash equilibrium is NP-hard.

Abstract: We consider a general class of non-cooperative games related to combinatorial covering and facility location problems. A game is based on an integer programming formulation of the corresponding optimization problem, and each of the k players wants to satisfy a subset of the constraints. For that purpose, resources available in integer units must be bought, and their cost can be shared arbitrarily between players. We consider the existence and cost of exact and approximate pure-strategy Nash equilibria. In general, the prices of anarchy and stability are in @Q(k) and deciding the existence of a pure Nash equilibrium is NP-hard. Under certain conditions, however, cheap Nash equilibria exist, in particular if the integrality gap of the underlying integer program is 1, or in the case of single constraint players. We also present algorithms that compute simultaneously near-stable and near-optimal approximate Nash equilibria in polynomial time.

55 citations

##### Cited by

More filters

•

[...]

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.

Abstract: We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.

8,285 citations

•

[...]

01 Jan 2001

TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.

Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,474 citations

••

[...]

TL;DR: A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolations, phenomena near epidemic thresholds, condensation transitions,critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned.

Abstract: The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, important steps have been made toward understanding the qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this rapidly developing field are reviewed. Two closely related classes of these critical phenomena are considered, namely, structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. Systems where a network and interacting agents on it influence each other are also discussed. A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned. Strong finite-size effects in these systems and open problems and perspectives are also discussed.

1,816 citations

••

[...]

TL;DR: A generalized framework of network quality functions was developed that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices.

Abstract: Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows studies of community structure in a general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.

1,716 citations

••

[...]

TL;DR: This work investigates the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales and develops a general statistical framework for the identification of modular architectures in evolving systems.

Abstract: Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.

1,319 citations