scispace - formally typeset
Search or ask a question
Author

Martin Hÿtch

Bio: Martin Hÿtch is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Electron holography & High-resolution transmission electron microscopy. The author has an hindex of 29, co-authored 111 publications receiving 5930 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for measuring and mapping displacement fields and strain fields from high-resolution electron microscope (HREM) images is developed based upon centring a small aperture around a strong reflection in the Fourier transform of an HREM lattice image and performing an inverse Fourier transformation.

1,828 citations

Journal ArticleDOI
TL;DR: A seeded-growth approach is reported to the synthesis of asymmetric core-shell CdSe/CdS nanorods with regular shapes and narrow distributions of rod diameters and lengths, the latter being easily tunable up to 150 nm.
Abstract: Key limitations of the colloidal semiconductor nanorods that have been reported so far are a significant distribution of lengths and diameters as well as the presence of irregular shapes produced by the current synthetic routes and, finally, the poor ability to fabricate large areas of oriented nanorod arrays. Here, we report a seeded-growth approach to the synthesis of asymmetric core−shell CdSe/CdS nanorods with regular shapes and narrow distributions of rod diameters and lengths, the latter being easily tunable up to 150 nm. These rods are highly fluorescent and show linearly polarized emission, whereby the emission energy depends mainly on the core diameter. We demonstrate their lateral alignment as well as their vertical self-alignment on substrates up to areas of several square micrometers.

1,134 citations

Journal ArticleDOI
15 May 2003-Nature
TL;DR: The measurement of displacements around an edge dislocation in silicon is reported using a combination of high-resolution electron microscopy and image analysis inherited from optical interferometry, considered as an experimental verification of anisotropic theory at the near-atomic scale.
Abstract: Defects and their associated long-range strain fields are of considerable importance in many areas of materials science. For example, a major challenge facing the semiconductor industry is to understand the influence of defects on device operation, a task made difficult by the fact that their interactions with charge carriers can occur far from defect cores, where the influence of the defect is subtle and difficult to quantify. The accurate measurement of strain around defects would therefore allow more detailed understanding of how strain fields affect small structures-in particular their electronic, mechanical and chemical properties--and how such fields are modified when confined to nanometre-sized volumes. Here we report the measurement of displacements around an edge dislocation in silicon using a combination of high-resolution electron microscopy and image analysis inherited from optical interferometry. The agreement of our observations with anisotropic elastic theory calculations is better than 0.03 A. Indeed, the results can be considered as an experimental verification of anisotropic theory at the near-atomic scale. With the development of nanostructured materials and devices, we expect the use of electron microscopy as a metrological tool for strain analysis to become of increasing importance.

474 citations

Journal ArticleDOI
19 Jun 2008-Nature
TL;DR: This method combines the advantages of moiré techniques with the flexibility of off-axis electron holography and is also applicable to relatively thick samples, thus reducing the influence of thin-film relaxation effects.
Abstract: Strained silicon is now an integral feature of the latest generation of transistors and electronic devices because of the associated enhancement in carrier mobility. Strain is also expected to have an important role in future devices based on nanowires and in optoelectronic components. Different strategies have been used to engineer strain in devices, leading to complex strain distributions in two and three dimensions. Developing methods of strain measurement at the nanoscale has therefore been an important objective in recent years but has proved elusive in practice: none of the existing techniques combines the necessary spatial resolution, precision and field of view. For example, Raman spectroscopy or X-ray diffraction techniques can map strain at the micrometre scale, whereas transmission electron microscopy allows strain measurement at the nanometre scale but only over small sample areas. Here we present a technique capable of bridging this gap and measuring strain to high precision, with nanometre spatial resolution and for micrometre fields of view. Our method combines the advantages of moire techniques with the flexibility of off-axis electron holography and is also applicable to relatively thick samples, thus reducing the influence of thin-film relaxation effects.

412 citations

Journal ArticleDOI
TL;DR: A detailed analysis of the internal structure of a decahedral Au nanoparticle is presented using aberration-corrected high-resolution electron microscopy and strain mapping to confirm the presence of a disclination and show the effect of elastic anisotropy on the strain state in these nanoparticles.
Abstract: Metallic nanoparticles exhibit exceptional optoelectronic properties with applications in plasmonics, biosensing and nanomedicine1,2,3,4,5. Recently, new synthesis techniques have enabled precise control over the sizes and shapes of metal nanoparticles6,7,8, occasionally leading to morphologies that cannot be properly characterized using standard techniques. An example is five-fold-twinned decahedral Au nanoparticles, which are intrinsically strained as a result of their unique geometry. Various competing models have been proposed to predict the strain states of such nanoparticles. Here, we present a detailed analysis of the internal structure of a decahedral Au nanoparticle using aberration-corrected high-resolution electron microscopy and strain mapping. Our measurements confirm the presence of a disclination, which is consistent with the commonly accepted strain model. However, we also observed shear gradients, which are absent from the models. By comparing our local strain determinations with finite-element calculations, we show the effect of elastic anisotropy on the strain state in these nanoparticles.

290 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤ 5%, are presented.
Abstract: ▪ Abstract Solution phase syntheses and size-selective separation methods to prepare semiconductor and metal nanocrystals, tunable in size from ∼1 to 20 nm and monodisperse to ≤5%, are presented. Preparation of monodisperse samples enables systematic characterization of the structural, electronic, and optical properties of materials as they evolve from molecular to bulk in the nanometer size range. Sample uniformity makes it possible to manipulate nanocrystals into close-packed, glassy, and ordered nanocrystal assemblies (superlattices, colloidal crystals, supercrystals). Rigorous structural characterization is critical to understanding the electronic and optical properties of both nanocrystals and their assemblies. At inter-particle separations 5–100 A, dipole-dipole interactions lead to energy transfer between neighboring nanocrystals, and electronic tunneling between proximal nanocrystals gives rise to dark and photoconductivity. At separations <5 A, exchange interactions cause otherwise insulating ass...

4,116 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Abstract: Controlling the structure of thermoelectric materials on all length scales (atomic, nanoscale and mesoscale) relevant for phonon scattering makes it possible to increase the dimensionless figure of merit to more than two, which could allow for the recovery of a significant fraction of waste heat with which to produce electricity.

3,670 citations