scispace - formally typeset
Search or ask a question
Author

Martin J. Berg

Bio: Martin J. Berg is an academic researcher from Nathan Kline Institute for Psychiatric Research. The author has contributed to research in topics: Metalloendopeptidase & Cathepsin. The author has an hindex of 18, co-authored 36 publications receiving 975 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis.
Abstract: Defective autophagy contributes to Alzheimer disease (AD) pathogenesis although evidence is conflicting on whether multiple stages are impaired. Here, for the first time, we have comprehensively evaluated the entire autophagic process specifically in CA1 pyramidal neurons of hippocampus from early and late-stage AD subjects and nondemented controls. CA1 neurons aspirated by laser capture microdissection were analyzed using a custom-designed microarray comprising 578 neuropathology- and neuroscience-associated genes. Striking upregulation of autophagy-related genes, exceeding that of other gene ontology groups, reflected increases in autophagosome formation and lysosomal biogenesis beginning at early AD stages. Upregulated autophagosome formation was further indicated by elevated gene and protein expression levels for autophagosome components and increased LC3-positive puncta. Increased lysosomal biogenesis was evidenced by activation of MiTF/TFE family transcriptional regulators, particularly TFE3 (transcription factor binding to IGHM enhancer 3) and by elevated expression of their target genes and encoded proteins. Notably, TFEB (transcription factor EB) activation was associated more strongly with glia than neurons. These findings establish that autophagic sequestration is both competent and upregulated in AD. Autophagosome-lysosome fusion is not evidently altered. Despite this early disease response, however, autophagy flux is progressively impeded due to deficient substrate clearance, as reflected by autolysosomal accumulation of LC3-II and SQSTM1/p62 and expansion of autolysosomal size and total area. We propose that sustained induction of autophagy in the face of progressively declining lysosomal clearance of substrates explains the uncommonly robust autophagic pathology and neuritic dystrophy implicated in AD pathogenesis.

232 citations

Journal ArticleDOI
TL;DR: It is reported that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99).
Abstract: Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.

101 citations

Journal ArticleDOI
TL;DR: Functionalized single-walled carbon nanotubes (SWNT) restored normal autophagy by reversing abnormal activation of mTOR signaling and deficits in lysosomal proteolysis, thereby facilitating elimination of autophagic substrates.
Abstract: Defective autophagy in Alzheimer’s disease (AD) promotes disease progression in diverse ways. Here, we demonstrate impaired autophagy flux in primary glial cells derived from CRND8 mice that overexpress mutant amyloid precursor protein (APP). Functionalized single-walled carbon nanotubes (SWNT) restored normal autophagy by reversing abnormal activation of mTOR signaling and deficits in lysosomal proteolysis, thereby facilitating elimination of autophagic substrates. These findings suggest SWNT as a novel neuroprotective approach to AD therapy.

100 citations

Journal ArticleDOI
TL;DR: Deletion of NFM in mice, but not the deletion of any other NF subunit, amplifies dopamine D1-receptor-mediated motor responses to cocaine while redistributing postsynaptic D 1-receptors from endosomes to plasma membrane, consistent with a specific modulatory role of N FM in D1.
Abstract: Synaptic roles for neurofilament (NF) proteins have rarely been considered. Here, we establish all four NF subunits as integral resident proteins of synapses. Compared with the population in axons, NF subunits isolated from synapses have distinctive stoichiometry and phosphorylation state, and respond differently to perturbations in vivo. Completely eliminating NF proteins from brain by genetically deleting three subunits (α-internexin, NFH and NFL) markedly depresses hippocampal long-term potentiation induction without detectably altering synapse morphology. Deletion of NFM in mice, but not the deletion of any other NF subunit, amplifies dopamine D1-receptor-mediated motor responses to cocaine while redistributing postsynaptic D1-receptors from endosomes to plasma membrane, consistent with a specific modulatory role of NFM in D1-receptor recycling. These results identify a distinct pool of synaptic NF subunits and establish their key role in neurotransmission in vivo, suggesting potential novel influences of NF proteins in psychiatric as well as neurological states.

98 citations

Journal ArticleDOI
TL;DR: Rapid and long‐lasting effects, together with its biophysical properties, suggest that this semisynthetic ganglioside acted upstream at or near a membrane site, and provide useful agents to further probe pathways relevant to neuronal death in culture.
Abstract: Caspase-3 activity increased dramatically in cytosolic extracts of rat cerebellar granule cells exposed to apoptotic conditions (basal medium Eagle (BME) containing 5 mM K+ without serum) when assayed with Ac-DEVD-amc, but not with Ac-YVAD-afc, a preferred substrate for caspase-1. This provided a basis to examine relationships between enzyme activity and cell viability for purposes of selecting an optimal time for comparing neuroprotective agents or strategies. Exposure of neurons to an apoptotic medium containing 5 mM K+ in absence of serum led to a rapid 5- to 10-fold increase in caspase-3 within 2-4 hr but without significant cell loss, or morphological alterations. Exposure to apoptotic medium followed by replacement with maintenance medium containing 25 mM K+ and serum led to a rapid fall in caspase-3 and prevention of cell death. This strategy was not effective after 13 hr exposure despite a large fall in enzyme activity. These temporal changes infer systems for rapid enzyme turnover and/or activation of cytoplasmic components linked to later DNA degradation. The effects of cycloheximide point to requirements for protein synthesis, and those of Glu exclude a caspase-3 dependent pathway for necrotic cell damage. Brief treatment with 10 microM LIGA20, an anti-necrotic agent, also attenuated cell loss and caspase-3 activity, indicating a broad spectrum of neuroprotection. Rapid and long-lasting effects, together with its biophysical properties, suggest that this semisynthetic ganglioside acted upstream at or near a membrane site. As such, gangliosides provide useful agents to further probe pathways relevant to neuronal death in culture.

85 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The functional bioenergetics of isolated mitochondria are reviewed, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons.
Abstract: Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca2+, generate reactive oxygen species, and undergo Ca2+-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.

1,200 citations

Journal ArticleDOI
TL;DR: It is concluded that a principal protease capable of down-regulating the levels of secreted Aβ extracellularly is IDE, and activity was unexpectedly found be associated with a time-dependent oligomerization of synthetic Aβ at physiological levels in the conditioned media of cultured cells.

823 citations

Journal ArticleDOI
TL;DR: Therapies for Alzheimer disease in clinical trials are gradually shifting from amyloid-β (Aβ)-targeting to tau-targeting approaches, and tau is likely to be a better target than Aβ once cognitive deficits manifest because the tau burden correlates better with clinical impairments than does the Aβ burden.
Abstract: Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.

659 citations

Journal ArticleDOI
TL;DR: The modulation of lysosome function could be a promising therapeutic strategy for the treatment of cancer as well as metabolic and neurodegenerative disorders.
Abstract: Exciting new discoveries have transformed the view of the lysosome from a static organelle dedicated to the disposal and recycling of cellular waste to a highly dynamic structure that mediates the adaptation of cell metabolism to environmental cues. Lysosome-mediated signalling pathways and transcription programmes are able to sense the status of cellular metabolism and control the switch between anabolism and catabolism by regulating lysosomal biogenesis and autophagy. The lysosome also extensively communicates with other cellular structures by exchanging content and information and by establishing membrane contact sites. It is now clear that lysosome positioning is a dynamically regulated process and a crucial determinant of lysosomal function. Finally, growing evidence indicates that the role of lysosomal dysfunction in human diseases goes beyond rare inherited diseases, such as lysosomal storage disorders, to include common neurodegenerative and metabolic diseases, as well as cancer. Together, these discoveries highlight the lysosome as a regulatory hub for cellular and organismal homeostasis, and an attractive therapeutic target for a broad variety of disease conditions.

602 citations