scispace - formally typeset
Search or ask a question
Author

Martin J. Jarvis

Bio: Martin J. Jarvis is an academic researcher from British Antarctic Survey. The author has contributed to research in topics: Ionosphere & Thermosphere. The author has an hindex of 30, co-authored 97 publications receiving 3497 citations. Previous affiliations of Martin J. Jarvis include Natural Environment Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: The Horizontal Wind Model (HWM07) as mentioned in this paper provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0-500 km).
Abstract: [1] The new Horizontal Wind Model (HWM07) provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0–500 km). It represents over 50 years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. The computer model is a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. It includes representations of the zonal mean circulation, stationary planetary waves, migrating tides, and the seasonal modulation thereof. HWM07 is composed of two components, a quiet time component for the background state described in this paper and a geomagnetic storm time component (DWM07) described in a companion paper.

490 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an update of the "key points" from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009.
Abstract: We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report

377 citations

01 Jan 2012
TL;DR: In this article, the authors present an update of the "key points" from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009.
Abstract: We present an update of the ‘key points’ from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report

324 citations

Journal ArticleDOI
TL;DR: In this article, a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters, was constructed for the first time, showing that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.
Abstract: In the upper atmosphere, greenhouse gases produce a cooling effect, instead of a warming effect. Increases in greenhouse gas concentrations are expected to induce substantial changes in the mesosphere, thermosphere, and ionosphere, including a thermal contraction of these layers. In this article we construct for the first time a pattern of the observed long-term global change in the upper atmosphere, based on trend studies of various parameters. The picture we obtain is qualitative, and contains several gaps and a few discrepancies, but the overall pattern of observed long-term changes throughout the upper atmosphere is consistent with model predictions of the effect of greenhouse gas increases. Together with the large body of lower atmospheric trend research, our synthesis indicates that anthropogenic emissions of greenhouse gases are affecting the atmosphere at nearly all altitudes between ground and space.

118 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a global empirical disturbance wind model (DWM07) that represents average geospace-storm-induced perturbations of upper thermospheric (200-600 km altitude) neutral winds.
Abstract: [1] We present a global empirical disturbance wind model (DWM07) that represents average geospace-storm-induced perturbations of upper thermospheric (200–600 km altitude) neutral winds. DWM07 depends on the following three parameters: magnetic latitude, magnetic local time, and the 3-h Kp geomagnetic activity index. The latitude and local time dependences are represented by vector spherical harmonic functions (up to degree 10 in latitude and order 3 in local time), and the Kp dependence is represented by quadratic B-splines. DWM07 is the storm time thermospheric component of the new Horizontal Wind Model (HWM07), which is described in a companion paper. DWM07 is based on data from the Wind Imaging Interferometer on board the Upper Atmosphere Research Satellite, the Wind and Temperature Spectrometer on board Dynamics Explorer 2, and seven ground-based Fabry-Perot interferometers. The perturbation winds derived from the three data sets are in good mutual agreement under most conditions, and the model captures most of the climatological variations evident in the data.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape are discussed.
Abstract: [1] Atmospheric gravity waves have been a subject of intense research activity in recent years because of their myriad effects and their major contributions to atmospheric circulation, structure, and variability. Apart from occasionally strong lower-atmospheric effects, the major wave influences occur in the middle atmosphere, between ∼ 10 and 110 km altitudes because of decreasing density and increasing wave amplitudes with altitude. Theoretical, numerical, and observational studies have advanced our understanding of gravity waves on many fronts since the review by Fritts [1984a]; the present review will focus on these more recent contributions. Progress includes a better appreciation of gravity wave sources and characteristics, the evolution of the gravity wave spectrum with altitude and with variations of wind and stability, the character and implications of observed climatologies, and the wave interaction and instability processes that constrain wave amplitudes and spectral shape. Recent studies have also expanded dramatically our understanding of gravity wave influences on the large-scale circulation and the thermal and constituent structures of the middle atmosphere. These advances have led to a number of parameterizations of gravity wave effects which are enabling ever more realistic descriptions of gravity wave forcing in large-scale models. There remain, nevertheless, a number of areas in which further progress is needed in refining our understanding of and our ability to describe and predict gravity wave influences in the middle atmosphere. Our view of these unknowns and needs is also offered.

2,206 citations

Journal ArticleDOI
TL;DR: The Super Dual Auroral Radar Network (SuperDARN) as discussed by the authors has been operating as an international co-operative organization for over 10 years and has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions.
Abstract: The Super Dual Auroral Radar Network (SuperDARN) has been operating as an international co-operative organization for over 10 years. The network has now grown so that the fields of view of its 18 radars cover the majority of the northern and southern hemisphere polar ionospheres. SuperDARN has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions. We commence this paper with a historical introduction to SuperDARN. Following this, we review the science performed by SuperDARN over the last 10 years covering the areas of ionospheric convection, field-aligned currents, magnetic reconnection, substorms, MHD waves, the neutral atmosphere, and E-region ionospheric irregularities. In addition, we provide an up-to-date description of the current network, as well as the analysis techniques available for use with the data from the radars. We conclude the paper with a discussion of the future of SuperDARN, its expansion, and new science opportunities.

690 citations

Ove Hoegh-Guldberg, Daniela Jacob, Marco Bindi, Sally Brown, I. A. Camilloni, Arona Diedhiou, Riyanti Djalante, Kristie L. Ebi1, Francois Engelbrecht1, Joel Guiot, Yasuaki Hijioka, S. Mehrotra, Antony J. Payne2, Sonia I. Seneviratne3, Adelle Thomas3, Rachel Warren4, G. Zhou4, Sharina Abdul Halim, Michelle Achlatis, Lisa V. Alexander, Myles R. Allen, Peter Berry, Christopher Boyer, Edward Byers, Lorenzo Brilli, Marcos Silveira Buckeridge, William W. L. Cheung, Marlies Craig, Neville Ellis, Jason P. Evans, Hubertus Fischer, Klaus Fraedrich, Sabine Fuss, Anjani Ganase, Jean-Pierre Gattuso, Peter Greve, Tania Guillén Bolaños, Naota Hanasaki, Tomoko Hasegawa, Katie Hayes, Annette L. Hirsch, Chris D. Jones, Thomas Jung, Markku Kanninen, Gerhard Krinner, David M. Lawrence, Timothy M. Lenton, Debora Ley, Diana Liverman, Natalie M. Mahowald, Kathleen L. McInnes, Katrin J. Meissner, Richard J. Millar, Katja Mintenbeck, Daniel M. Mitchell, Alan C. Mix, Dirk Notz, Leonard Nurse, Andrew Emmanuel Okem, Lennart Olsson, Michael Oppenheimer, Shlomit Paz, Juliane Petersen, Jan Petzold, Swantje Preuschmann, Mohammad Feisal Rahman, Joeri Rogelj, Hanna Scheuffele, Carl-Friedrich Schleussner, Daniel Scott, Roland Séférian, Jana Sillmann, Chandni Singh, Raphael Slade, Kimberly Stephenson, Tannecia S. Stephenson, Mouhamadou Bamba Sylla, Mark Tebboth, Petra Tschakert, Robert Vautard, Richard Wartenburger, Michael Wehner, Nora Marie Weyer, Felicia S. Whyte, Gary W. Yohe, Xuebin Zhang, Robert B. Zougmoré 
01 Jan 2018
TL;DR: In this article, the authors present a survey of women's sportswriters in South Africa and Ivory Coast, including: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Ant
Abstract: Lead Authors: Marco Bindi (Italy), Sally Brown (UK), Ines Camilloni (Argentina), Arona Diedhiou (Ivory Coast/Senegal), Riyanti Djalante (Japan/Indonesia), Kristie L. Ebi (USA), Francois Engelbrecht (South Africa), Joel Guiot (France), Yasuaki Hijioka (Japan), Shagun Mehrotra (USA/India), Antony Payne (UK), Sonia I. Seneviratne (Switzerland), Adelle Thomas (Bahamas), Rachel Warren (UK), Guangsheng Zhou (China)

614 citations

Journal ArticleDOI
21 Jul 2016-Nature
TL;DR: Decadal temperature changes in this region are not primarily associated with the drivers of global temperature change but, rather, reflect the extreme natural internal variability of the regional atmospheric circulation.
Abstract: Since the 1950s, research stations on the Antarctic Peninsula have recorded some of the largest increases in near-surface air temperature in the Southern Hemisphere. This warming has contributed to the regional retreat of glaciers, disintegration of floating ice shelves and a 'greening' through the expansion in range of various flora. Several interlinked processes have been suggested as contributing to the warming, including stratospheric ozone depletion, local sea-ice loss, an increase in westerly winds, and changes in the strength and location of low-high-latitude atmospheric teleconnections. Here we use a stacked temperature record to show an absence of regional warming since the late 1990s. The annual mean temperature has decreased at a statistically significant rate, with the most rapid cooling during the Austral summer. Temperatures have decreased as a consequence of a greater frequency of cold, east-to-southeasterly winds, resulting from more cyclonic conditions in the northern Weddell Sea associated with a strengthening mid-latitude jet. These circulation changes have also increased the advection of sea ice towards the east coast of the peninsula, amplifying their effects. Our findings cover only 1% of the Antarctic continent and emphasize that decadal temperature changes in this region are not primarily associated with the drivers of global temperature change but, rather, reflect the extreme natural internal variability of the regional atmospheric circulation.

523 citations

Journal ArticleDOI
TL;DR: In this paper, the Horizontal Wind Model (HWM) has been updated in the thermosphere with new observations and formulation changes, including ground-based 630 nm Fabry-Perot Interferometer (FPI) measurements in the equatorial and polar regions, as well as cross track winds from the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite.
Abstract: The Horizontal Wind Model (HWM) has been updated in the thermosphere with new observations and formulation changes. These new data are ground-based 630 nm Fabry-Perot Interferometer (FPI) measurements in the equatorial and polar regions, as well as cross-track winds from the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite. The GOCE wind observations provide valuable wind data in the twilight regions. The ground-based FPI measurements fill latitudinal data gaps in the prior observational database. Construction of this reference model also provides the opportunity to compare these new measurements. The resulting update (HWM14) provides an improved time-dependent, observationally based, global empirical specification of the upper atmospheric general circulation patterns and migrating tides. In basic agreement with existing accepted theoretical knowledge of the thermosphere general circulation, additional calculations indicate that the empirical wind specifications are self-consistent with climatological ionosphere plasma distribution and electric field patterns.

496 citations