scispace - formally typeset
Search or ask a question
Author

Martin Jansen

Bio: Martin Jansen is an academic researcher from Max Planck Society. The author has contributed to research in topics: Crystal structure & Powder diffraction. The author has an hindex of 59, co-authored 1353 publications receiving 22034 citations. Previous affiliations of Martin Jansen include University of Bonn & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
27 Apr 2000-Nature
TL;DR: Solid solutions of the perovskites CaTaO 2N and LaTaON2 constitute promising candidates for inorganic pigment substitutes: their brilliance, tinting strength, opacity, dispersability, light-fastness and heat stability rival that of the cadmium pigments, while their colour can be tuned through the desired range, from yellow through orange to deep red, by simple composition adjustments.
Abstract: Inorganic pigments have been utilized by mankind since ancient times, and are still widely used to colour materials exposed to elevated temperatures during processing or application Indeed, in the case of glasses, glazes and ceramics, there is no alternative to inorganic pigments for colouring However, most inorganic pigments contain heavy metals or transition metals that can adversely effect the environment and human health if critical levels are exceeded Cadmium-based pigments in particular are a cause of concern: although the pigments are not toxic due to their very low solubility in water and dilute mineral acids, cadmium itself is toxic and can enter the environment in a bioavailable form through waste-disposal sites and incineration plants This has led to regulations, based on the precautionary principle, that strongly restrict the use of cadmium pigments And even though recent assessments have concluded that the risk to humans or the environment might be not as significant as originally feared, a strong demand for inherently safer substitutes remains Here we demonstrate that solid solutions of the perovskites CaTaO2N and LaTaON2 constitute promising candidates for such substitutes: their brilliance, tinting strength, opacity, dispersability, light-fastness and heat stability rival that of the cadmium pigments, while their colour can be tuned through the desired range, from yellow through orange to deep red, by simple composition adjustments Because all the constituent elements are harmless, this perovskite-based inorganic pigment system seems a promising replacement that could eliminate one of the sources for cadmium emissions to the environment and some of the remaining concerns about pigment safety

602 citations

Journal ArticleDOI
TL;DR: The distinction between valence electrons and essentially inactive core electrons is the basis of many classifying concepts in chemistry as discussed by the authors, and it has recently been recognized that this is an oversimplification and should, at least in some areas, be modified.
Abstract: The distinction between valence electrons and essentially inactive core electrons is the basis of many classifying concepts in chemistry. However, it has recently been recognized that this is an oversimplification and should, at least in some areas of chemistry, be modified. Many cases are known where cations with closed d10 configurations are subject to homoatomic interactions that influence structure and properties. A characteristic and surprisingly uniform structural feature (e.g., of a number of compounds containing monovalent coinage metals) is a clusterlike assembly of d10 cations that corresponds in geometry and bond lengths to fragments of the metal structures themselves. Further evidence for a special type of bonding in such compounds is provided by their physical properties; for example, the absorption in the UV/VIS region shows a drastic redshift and the compounds are often conductors or semiconductors. The d electrons in such cases have obviously lost their pure “core” nature. All bonding models so far proposed for such systems involve mixing of higher orbitals.

572 citations

Journal ArticleDOI
07 Aug 2014-Nature
TL;DR: This work converts molecular precursors into ultrashort singly capped ‘armchair’ nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum surface, and elongates these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres.
Abstract: Present preparation methods fail to meet fully the demand for structurally pure single-walled carbon nanotubes; surface-catalysed cyclodehydrogenation reactions are now shown to convert precursor molecules deposited on a platinum(111) surface into ultrashort nanotube seeds that can then be grown further into defect-free and structurally pure single-walled carbon nanotubes of single chirality. The electronic properties of single-walled carbon nanotubes (SWCNTs) are extraordinarily sensitive to their precise structure. To exploit their technological potential fully, samples containing only one SWCNT type are needed. Juan Ramon Sanchez-Valencia et al. have combined synthetic chemistry with materials engineering to develop a strategy that, with further optimization, could provide a route to nanotube-based materials for use in light detectors, photovoltaics, field-effect transistors and sensors. They use a surface-catalysed cyclodehydrogenation reaction to fold rationally designed precursor molecules deposited on a Pt(111) surface to produce 'end caps' that act as seeds for the growth of defect-free and structurally pure SWCNTs. The technique requires only modest temperatures and is fully compatible with today's complementary metal oxide semiconductor technologies. Cover: Konstantin Amsharov. Over the past two decades, single-walled carbon nanotubes (SWCNTs) have received much attention because their extraordinary properties are promising for numerous applications1,2. Many of these properties depend sensitively on SWCNT structure, which is characterized by the chiral index (n,m) that denotes the length and orientation of the circumferential vector in the hexagonal carbon lattice. Electronic properties are particularly strongly affected, with subtle structural changes switching tubes from metallic to semiconducting with various bandgaps. Monodisperse ‘single-chirality’ (that is, with a single (n,m) index) SWCNTs are thus needed to fully exploit their technological potential1,2. Controlled synthesis through catalyst engineering3,4,5,6, end-cap engineering7 or cloning strategies8,9, and also tube sorting based on chromatography10,11, density-gradient centrifugation, electrophoresis and other techniques12, have delivered SWCNT samples with narrow distributions of tube diameter and a large fraction of a predetermined tube type. But an effective pathway to truly monodisperse SWCNTs remains elusive. The use of template molecules to unambiguously dictate the diameter and chirality of the resulting nanotube8,13,14,15,16 holds great promise in this regard, but has hitherto had only limited practical success7,17,18. Here we show that this bottom-up strategy can produce targeted nanotubes: we convert molecular precursors into ultrashort singly capped (6,6) ‘armchair’ nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum (111) surface, and then elongate these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres. We expect that our on-surface synthesis approach will provide a route to nanotube-based materials with highly optimized properties for applications such as light detectors, photovoltaics, field-effect transistors and sensors2.

486 citations

Journal ArticleDOI
30 Jul 1999-Science
TL;DR: Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures, and combine several desired properties relevant for an application in fiber-reinforced ceramic composites.
Abstract: High-temperature engine applications have been limited by the performance of metal alloys and carbide fiber composites at elevated temperatures. Random inorganic networks composed of silicon, boron, nitrogen, and carbon represent a novel class of ceramics with outstanding durability at elevated temperatures. SiBN(3)C was synthesized by pyrolysis of a preceramic N-methylpolyborosilazane made from the single-source precursor Cl(3)Si-NH-BCl(2). The polymer can be processed to a green fiber by melt-spinning, which then undergoes an intermediate curing step and successive pyrolysis. The ceramic fibers, which are presently produced on a semitechnical scale, combine several desired properties relevant for an application in fiber-reinforced ceramic composites: thermal stability, mechanical strength, high-temperature creep resistivity, low density, and stability against oxidation or molten silicon.

305 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Ryoji Asahi1, Takeshi Morikawa1, T. Ohwaki1, Koyu Aoki1, Y. Taga1 
13 Jul 2001-Science
TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Abstract: To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Films and powders of TiO 2- x N x have revealed an improvement over titanium dioxide (TiO 2 ) under visible light (wavelength 2 has proven to be indispensable for band-gap narrowing and photocatalytic activity, as assessed by first-principles calculations and x-ray photoemission spectroscopy.

11,402 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations