scispace - formally typeset
Search or ask a question
Author

Martin M. Frank

Bio: Martin M. Frank is an academic researcher from IBM. The author has contributed to research in topics: Gate dielectric & Dielectric. The author has an hindex of 43, co-authored 168 publications receiving 5597 citations. Previous affiliations of Martin M. Frank include Fritz Haber Institute of the Max Planck Society & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have studied hafnium oxide and aluminum oxide grown on gallium arsenide by atomic layer deposition and showed that as-deposited films are continuous and predominantly amorphous.
Abstract: High-performance metal-oxide-semiconductor field effect transistors (MOSFETs) on III–V semiconductors have long proven elusive. High-permittivity (high-κ) gate dielectrics may enable their fabrication. We have studied hafnium oxide and aluminum oxide grown on gallium arsenide by atomic layer deposition. As-deposited films are continuous and predominantly amorphous. A native oxide remains intact underneath HfO2 during growth, while thinning occurs during Al2O3 deposition. Hydrofluoric acid etching prior to growth minimizes the final interlayer thickness. Thermal treatments at ∼600°C decompose arsenic oxides and remove interfacial oxygen. These observations explain the improved electrical quality and increased gate stack capacitance after thermal treatments.

317 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: In this article, undoped-body, gate-all-around (GAA) Si nanowire (NW) MOSFETs with excellent electrostatic scaling were demonstrated.
Abstract: We demonstrate undoped-body, gate-all-around (GAA) Si nanowire (NW) MOSFETs with excellent electrostatic scaling. These NW devices, with a TaN/Hf-based gate stack, have high drive-current performance with NFET/PFET I DSAT = 825/950 µA/µm (circumference-normalized) or 2592/2985 µA/µm (diameter-normalized) at supply voltage V DD = 1 V and off-current I OFF = 15 nA/µm. Superior NW uniformity is obtained through the use of a combined hydrogen annealing and oxidation process. Clear scaling of short-channel effects versus NW size is observed.

300 citations

Journal ArticleDOI
TL;DR: The paper addresses stacks of doped polySi gate electrodes on ultrathin layers of high-κ dielectrics, dual-workfunction metal-gate technology, and fully silicided gates in mainstream Si CMOS technology.
Abstract: The paper reviews our recent progress and current challenges in implementing advanced gate stacks composed of high-κ dielectric materials and metal gates in mainstream Si CMOS technology. In particular, we address stacks of doped polySi gate electrodes on ultrathin layers of high-κ dielectrics, dual-workfunction metal-gate technology, and fully silicided gates. Materials and device characterization, processing, and integration issues are discussed.

269 citations

Journal ArticleDOI
TL;DR: In this paper, the limits of magnetism in thin, electronic grade, hafnium oxide, and HFO silicate films deposited onto silicon wafers by chemical vapor deposition and atomic layer deposition were established.
Abstract: We establish the limits of magnetism in thin, electronic grade, hafnium oxide, and hafnium silicate films deposited onto silicon wafers by chemical vapor deposition and atomic layer deposition. To the limits of sensitivity of our measurement techniques, no ferromagnetism occurs in these samples. Contamination by handling with stainless-steel tweezers leads to a measurable magnetic signal. The magnetic properties of this contamination are similar to those attributed to ferromagnetic HfO2 in a recent report, including the magnitude of moment, magnetization field dependence, and spatial asymmetry.

218 citations

Journal ArticleDOI
TL;DR: Ferroelectric switching of 8- to 40-nm-thick BaTiO₃ films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.
Abstract: Epitaxial growth of SrTiO₃ on silicon by molecular beam epitaxy has opened up the route to the integration of functional complex oxides on a silicon platform. Chief among them is ferroelectric functionality using perovskite oxides such as BaTiO₃. However, it has remained a challenge to achieve ferroelectricity in epitaxial BaTiO₃ films with a polarization pointing perpendicular to the silicon substrate without a conducting bottom electrode. Here, we demonstrate ferroelectricity in such stacks. Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal the presence of crystalline domains with the long axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180°. Open, saturated hysteresis loops are recorded. Thus, ferroelectric switching of 8- to 40-nm-thick BaTiO₃ films in metal-ferroelectric-semiconductor structures is realized, and field-effect devices using this epitaxial oxide stack can be envisaged.

211 citations


Cited by
More filters
Journal ArticleDOI

4,756 citations

Journal ArticleDOI
TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Abstract: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each. Their size ranges from 2-3 to about 20 nm. What is special about this size regime that placed NCs among the hottest research topics of the last decades? The quantum mechanical coupling * To whom correspondence should be addressed. E-mail: dvtalapin@uchicago.edu. † The University of Chicago. ‡ Argonne National Lab. Chem. Rev. 2010, 110, 389–458 389

3,720 citations

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations

Journal ArticleDOI
TL;DR: A review of the fundamental interactions of water with solid surfaces can be found in this paper, where the authors assimilated the results of the TM review with those covered by the authors to provide a current picture of water interactions on solid surfaces, such as how water adsorbs, what are the chemical and electrostatic forces that constitute the adsorbed layer, how is water thermally or non-thermally activated and how do coadsorbates influence these properties of water.

2,022 citations