scispace - formally typeset
Search or ask a question
Author

Martin Magnusson

Other affiliations: Volvo Construction Equipment
Bio: Martin Magnusson is an academic researcher from Örebro University. The author has contributed to research in topics: Computer science & Point cloud. The author has an hindex of 20, co-authored 70 publications receiving 2315 citations. Previous affiliations of Martin Magnusson include Volvo Construction Equipment.


Papers
More filters
Journal ArticleDOI
TL;DR: Scan registration is an essential sub-task when building maps based on range finder data from mobile robots, and the problem is to deduce how the robot has moved between consecutive scans, based on the data collected.
Abstract: Scan registration is an essential sub-task when building maps based on range finder data from mobile robots. The problem is to deduce how the robot has moved between consecutive scans, based on the ...

654 citations

01 Jan 2009
TL;DR: This dissertation extends the original two-dimensional NDT registration algorithm of Biber and Straser to 3D and introduces a number of improvements and proposes to use a combination of local visual features and Colour-NDT for robust registration of coloured 3D scans.
Abstract: This dissertation is concerned with three-dimensional (3D) sensing and 3D scan representation. Three-dimensional records are important tools in several disciplines; such as medical imaging, archaeology, and mobile robotics. This dissertation proposes the normal-distributions transform, NDT, as a general 3D surface representation with applications in scan registration, localisation, loop detection, and surface-structure analysis. After applying NDT, the surface is represented by a smooth function with analytic derivatives. This representation has several attractive properties. The smooth function representation makes it possible to use standard numerical optimisation methods, such as Newton’s method, for 3D registration. This dissertation extends the original two-dimensional NDT registration algorithm of Biber and Straser to 3D and introduces a number of improvements. The 3D-NDT scan-registration algorithm is compared to current de facto standard registration algorithms. 3D-NDT scan registration with the proposed extensions is shown to be more robust, more accurate, and faster than the popular ICP algorithm. An additional benefit is that 3D-NDT registration provides a confidence measure of the result with little additional effort. Furthermore, a kernel-based extension to 3D-NDT for registering coloured data is proposed. Approaches based on local visual features typically use only a small fraction of the available 3D points for registration. In contrast, Colour-NDT uses all of the available 3D data. The dissertation proposes to use a combination of local visual features and Colour-NDT for robust registration of coloured 3D scans. Also building on NDT, a novel approach using 3D laser scans to perform appearance-based loop detection for mobile robots is proposed. Loop detection is an importantproblem in the SLAM (simultaneous localisation and mapping) domain. The proposed approach uses only the appearance of 3D point clouds to detect loops and requires nopose information. It exploits the NDT surface representation to create histograms based on local surface orientation and smoothness. The surface-shape histograms compress the input data by two to three orders of magnitude. Because of the high compression rate, the histograms can be matched efficiently to compare the appearance of two scans. Rotation invariance is achieved by aligning scans with respect to dominant surface orientations. In order to automatically determine the threshold that separates scans at loop closures from nonoverlapping ones, the proposed approach uses expectation maximisation to fit a Gamma mixture model to the output similarity measures. In order to enable more high-level tasks, it is desirable to extract semantic information from 3D models. One important task where such 3D surface analysis is useful is boulder detection for mining vehicles. This dissertation presents a method, also inspired by NDT, that provides clues as to where the pile is, where the bucket should be placed for loading, and where there are obstacles. The points of 3D point clouds are classified based on the surrounding surface roughness and orientation. Other potential applications include extraction of drivable paths over uneven surfaces.

313 citations

Book ChapterDOI
24 Jun 2015
TL;DR: How the SPENCER project advances the fields of detection and tracking of individuals and groups, recognition of human social relations and activities, normative human behavior learning, socially-aware task and motion planning, learning socially annotated maps, and conducting empirical experiments to assess socio-psychological effects of normative robot behaviors is described.
Abstract: We present an ample description of a socially compliant mobile robotic platform, which is developed in the EU-funded project SPENCER. The purpose of this robot is to assist, inform and guide passengers in large and busy airports. One particular aim is to bring travellers of connecting flights conveniently and efficiently from their arrival gate to the passport control. The uniqueness of the project stems from the strong demand of service robots for this application with a large potential impact for the aviation industry on one side, and on the other side from the scientific advancements in social robotics, brought forward and achieved in SPENCER. The main contributions of SPENCER are novel methods to perceive, learn, and model human social behavior and to use this knowledge to plan appropriate actions in real-time for mobile platforms. In this paper, we describe how the project advances the fields of detection and tracking of individuals and groups, recognition of human social relations and activities, normative human behavior learning, socially-aware task and motion planning, learning socially annotated maps, and conducting empirical experiments to assess socio-psychological effects of normative robot behaviors.

240 citations

Journal ArticleDOI
TL;DR: This work proposes a novel algorithm that achieves accurate point cloud registration an order of a magnitude faster than the current state of the art through the use of a compact spatial representation: the Three-Dimensional Normal Distributions Transform (3D-NDT).
Abstract: Registration of range sensor measurements is an important task in mobile robotics and has received a lot of attention. Several iterative optimization schemes have been proposed in order to align th ...

223 citations

Proceedings ArticleDOI
12 May 2009
TL;DR: The iterative closest points algorithm (ICP) is compared to the normal distributions transform (NDT) and an improved version of NDT is presented with a substantially larger valley of convergence than previously published versions.
Abstract: To advance robotic science it is important to perform experiments that can be replicated by other researchers to compare different methods. However, these comparisons tend to be biased, since re-implementations of reference methods often lack thoroughness and do not include the hands-on experience obtained during the original development process. This paper presents a thorough comparison of 3D scan registration algorithms based on a 3D mapping field experiment, carried out by two research groups that are leading in the field of 3D robotic mapping. The iterative closest points algorithm (ICP) is compared to the normal distributions transform (NDT). We also present an improved version of NDT with a substantially larger valley of convergence than previously published versions.

191 citations


Cited by
More filters
Book
01 Jan 2009

8,216 citations

Proceedings ArticleDOI
24 Dec 2012
TL;DR: A large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system is recorded for the evaluation of RGB-D SLAM systems.
Abstract: In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video frame rate (30 Hz). The ground-truth trajectory was obtained from a motion-capture system with eight high-speed tracking cameras (100 Hz). The dataset consists of 39 sequences that were recorded in an office environment and an industrial hall. The dataset covers a large variety of scenes and camera motions. We provide sequences for debugging with slow motions as well as longer trajectories with and without loop closures. Most sequences were recorded from a handheld Kinect with unconstrained 6-DOF motions but we also provide sequences from a Kinect mounted on a Pioneer 3 robot that was manually navigated through a cluttered indoor environment. To stimulate the comparison of different approaches, we provide automatic evaluation tools both for the evaluation of drift of visual odometry systems and the global pose error of SLAM systems. The benchmark website [1] contains all data, detailed descriptions of the scenes, specifications of the data formats, sample code, and evaluation tools.

3,050 citations

Posted Content
TL;DR: It is shown that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.
Abstract: In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is no exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.

2,679 citations

Journal ArticleDOI
TL;DR: An open-source framework to generate volumetric 3D environment models based on octrees and uses probabilistic occupancy estimation that represents not only occupied space, but also free and unknown areas and an octree map compression method that keeps the 3D models compact.
Abstract: Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.

2,135 citations

01 Jan 2013
TL;DR: In this paper, an open-source framework is presented to generate volumetric 3D environ- ment models based on octrees and uses probabilistic occupancy estimation, which explicitly repre- sents not only occupied space, but also free and unknown areas.
Abstract: Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environ- ment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly repre- sents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The re- sults demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.

1,388 citations