scispace - formally typeset
Search or ask a question
Author

Martin Markovic

Bio: Martin Markovic is an academic researcher. The author has contributed to research in topics: Honey bee & American foulbrood. The author has an hindex of 7, co-authored 10 publications receiving 158 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria.
Abstract: Honeybee (Apis mellifera L.) workers act as passive vectors of Paenibacillus larvae spores, which cause the quarantine disease American foulbrood (AFB). We assessed the relative proportions of P. larvae within the honeybee microbiome using metabarcoding analysis of the 16 S rRNA gene. The microbiome was analyzed in workers outside of the AFB zone (control - AFB0), in workers from asymptomatic colonies in an AFB apiary (AFB1), and in workers from colonies exhibiting clinical AFB symptoms (AFB2). The microbiome was processed for the entire community and for a cut-off microbiome comprising pathogenic/environmental bacteria following the removal of core bacterial sequences; varroosis levels were considered in the statistical analysis. No correlation was observed between AFB status and varroosis level, but AFB influenced the worker bee bacterial community, primarily the pathogenic/environmental bacteria. There was no significant difference in the relative abundance of P. larvae between the AFB1 and AFB0 colonies, but we did observe a 9-fold increase in P. larvae abundance in AFB2 relative to the abundance in AFB1. The relative sequence numbers of Citrobacter freundii and Hafnia alvei were higher in AFB2 and AFB1 than in AFB0, whereas Enterococcus faecalis, Klebsiella oxytoca, Spiroplasma melliferum and Morganella morganii were more abundant in AFB0 and AFB1 than in AFB2.

52 citations

Journal ArticleDOI
TL;DR: The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding.
Abstract: We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.

42 citations

Journal ArticleDOI
25 Sep 2017-PeerJ
TL;DR: The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius within the honeybee worker microbiome, and the hypothesis that this pathogen exists in an enzootic state is supported.
Abstract: BACKGROUND Melissococcus plutonius is an entomopathogenic bacterium that causes European foulbrood (EFB), a honeybee (Apis mellifera L.) disease that necessitates quarantine in some countries. In Czechia, positive evidence of EFB was absent for almost 40 years, until an outbreak in the Krkonose Mountains National Park in 2015. This occurrence of EFB gave us the opportunity to study the epizootiology of EFB by focusing on the microbiome of honeybee workers, which act as vectors of honeybee diseases within and between colonies. METHODS The study included worker bees collected from brood combs of colonies (i) with no signs of EFB (EFB0), (ii) without clinical symptoms but located at an apiary showing clinical signs of EFB (EFB1), and (iii) with clinical symptoms of EFB (EFB2). In total, 49 samples from 27 honeybee colonies were included in the dataset evaluated in this study. Each biological sample consisted of 10 surface-sterilized worker bees processed for DNA extraction. All subjects were analyzed using conventional PCR and by metabarcoding analysis based on the 16S rRNA gene V1-V3 region, as performed through Illumina MiSeq amplicon sequencing. RESULTS The bees from EFB2 colonies with clinical symptoms exhibited a 75-fold-higher incidence of M. plutonius than those from EFB1 asymptomatic colonies. Melissococcus plutonius was identified in all EFB1 colonies as well as in some of the control colonies. The proportions of Fructobacillus fructosus, Lactobacillus kunkeei, Gilliamella apicola, Frischella perrara, and Bifidobacterium coryneforme were higher in EFB2 than in EFB1, whereas Lactobacillus mellis was significantly higher in EFB2 than in EFB0. Snodgrassella alvi and L. melliventris, L. helsingborgensis and, L. kullabergensis exhibited higher proportion in EFB1 than in EFB2 and EFB0. The occurrence of Bartonella apis and Commensalibacter intestini were higher in EFB0 than in EFB2 and EFB1. Enterococcus faecalis incidence was highest in EFB2. CONCLUSIONS High-throughput Illumina sequencing permitted a semi-quantitative analysis of the presence of M. plutonius within the honeybee worker microbiome. The results of this study indicate that worker bees from EFB-diseased colonies are capable of transmitting M. plutonius due to the greatly increased incidence of the pathogen. The presence of M. plutonius sequences in control colonies supports the hypothesis that this pathogen exists in an enzootic state. The bacterial groups synergic to both the colonies with clinical signs of EFB and the EFB-asymptomatic colonies could be candidates for probiotics. This study confirms that E. faecalis is a secondary invader to M. plutonius; however, other putative secondary invaders were not identified in this study.

41 citations

Journal ArticleDOI
TL;DR: Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of Ks and moisture, and behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of KS and moisture were found.

23 citations

Journal ArticleDOI
TL;DR: It is suggested that the analysis of pesticides in bee bread and in bees from the brood comb is a useful addition to dead bee and suspected crop analysis in poisoning incidents to inform the extent of recent in-hive contamination.

18 citations


Cited by
More filters
Journal ArticleDOI
05 Feb 2016-Science
TL;DR: A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera, and exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies.
Abstract: Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world’s honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides.

360 citations

Journal ArticleDOI
TL;DR: Evidence suggests that the gut microbiome plays an important role in bee health and disease.
Abstract: The role of the gut microbiome in animal health has become increasingly evident. Unlike most other insects, honey bees possess a highly conserved and specialized core gut microbiome, which consists of nine bacterial species and is acquired mostly through social transmission. Five of these species are ubiquitous in honey bees and are also present in bumble bees. Recent studies have shown that the bee gut microbiome plays a role in metabolism, immune function, growth and development, and protection against pathogens. Disruption of the gut microbiome has also been shown to have detrimental effects on bee health. Overall, evidence suggests that the gut microbiome plays an important role in bee health and disease.

254 citations

Journal ArticleDOI
TL;DR: This review promotes further research on plant-microbe joint combined remediation and examines the different behaviors of water-soluble and hydrophobic OPPs in CWs.

143 citations

Journal ArticleDOI
TL;DR: Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris, and any confirmed acaropathogenic bacteria among microbiota was not identified.
Abstract: Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota.

136 citations

Journal ArticleDOI
08 May 2017-Insects
TL;DR: Current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens are reviewed to highlight gaps in knowledge and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Abstract: Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.

94 citations