scispace - formally typeset
Search or ask a question
Author

Martín Oesterheld

Bio: Martín Oesterheld is an academic researcher from University of Buenos Aires. The author has contributed to research in topics: Grazing & Biomass (ecology). The author has an hindex of 40, co-authored 94 publications receiving 13353 citations. Previous affiliations of Martín Oesterheld include United States Department of Defense & Syracuse University.


Papers
More filters
Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Journal ArticleDOI
14 Sep 1989-Nature
TL;DR: Evidence is presented that herbivore biomass, consumption and produc-tivity are closely correlated with plant productivity, suggesting that the latter is a principal integrator and indicator of functional processes in food webs.
Abstract: ECOSYSTEMS are structurally organized as food webs within which energy is transmitted between trophic levels and dissipated into the environment. Energy flow between two trophic levels is given by the amount of production at the lower level and by the proportion of production that is consumed, assimilated and res-pired at the higher level. Considerable evidence indicates that food-web structure varies predictably in different habitats1–5, but much less is known about quantitative relationships among food web fluxes. Many of the energetic properties of herbivores in African game parks are associated with rainfall and, by inference, with net primary productivity6,7. Respiratory costs per unit produc-tion at the consumer trophic level are higher for homeotherms than for heterotherms8. Plant secondary chemicals affect herbivore dietary choices9,10 and the allocation of plant resources to those chemicals varies with resource availability11. How these phenomena are translated into ecosystem fluxes is unknown. We present evidence that herbivore biomass, consumption and produc-tivity are closely correlated with plant productivity, suggesting that the latter is a principal integrator and indicator of functional processes in food webs.

666 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of grazing on soil organic carbon (SOC) stocks in grasslands were investigated and the major mechanistic pathways involved were established, including changes in net primary production (NPP), changes in nitrogen stocks (nitrogen pathway), and changes in organic matter decomposition (decomposition pathway).

330 citations

Journal ArticleDOI
TL;DR: Although water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought, and this study cannot explain the vegetation zonation along the transect on the basis of water supply to the existing plant cover.
Abstract: Above- and belowground biomass distribu- tion, isotopic composition of soil and xylem water, and carbon isotope ratios were studied along an aridity gradi- ent in Patagonia (44-45~ Sites, ranging from those with Nothofagus forest with high annual rainfall (770 ram) to Nothofagus scrub (520 mm), Festuca (290 mm) and Stipa (160 mm) grasslands and into desert vegetation (125 ram), were chosen to test whether root- ing depth compensates for low rainfall. Along this gradi- ent, both mean above- and belowground biomass and leaf area index decreased, but average carbon isotope ra- tios of sun leaves remained constant (at -27%o), indicat- ing no major differences in the ratio of assimilation to stomatal conductance at the time of leaf growth. The depth of the soil horizon that contained 90% of the root biomass was similar for forests and grasslands (about 0.80-0.50 m), but was shallower in the desert (0.30 m). In all habitats, roots reached water-saturated soils or ground water at 2-3 m depth. The depth profile of oxy- gen and hydrogen isotope ratios of soil water corre- sponded inversely to volumetric soil water contents and showed distinct patterns throughout the soil profile due to evaporation, water uptake and rainfall events of the past year. The isotope ratios of soil water indicated that high soil moisture at 2-3 m soil depth had originated from rainy periods earlier in the season or even from past rainy seasons. Hydrogen and oxygen isotope ratios of xylem water revealed that all plants used water from re- cent rain events in the topsoil and not from water-saturat- ed soils at greater depth. However, this study cannot ex- plain the vegetation zonation along the transect on the basis of water supply to the existing plant cover. Al- though water was accessible to roots in deeper soil layers in all habitats, as demonstrated by high soil moisture, earlier rain events were not fully utilized by the current plant cover during summer drought. The role of seedling establishment in determining species composition and vegetation type, and the indirect effect of seedling estab- lishment on the use of water by fully developed plant cover, are discussed in relation to climate change and vegetation modelling.

325 citations

Journal ArticleDOI
01 Jul 2002-Oikos
TL;DR: The results indicate that the magnitude of defoliated response by an individual plant differs among plant compartments and this response is modulated by other factors, such as time for recovery after defoliation, and nutrient availability.
Abstract: The diversity of responses of individual grasses to defoliation created a controversy about 15 years ago, which still needs clarification We quantitatively assessed the evidence of defoliation effects on individual grass growth, addressing two main questions: 1) what is the average and variability of the effect of defoliation on plant growth? and 2) what are the associated conditions accounting for the diversity of effects? Regarding the first question, the results showed a negative overall effect of defoliation on plant growth and substantial variability in the defoliation responses of different plant components There was an intermediate negative effect on total production (which included clipped-off biomass), a large negative effect on final live biomass at harvest, and a minimal effect on root biomass Regarding the second question (conditions accounting for the diversity of effects), defoliation intensity had no effect on the response to defoliation, but both time for recovery from the last defoliation and the period of time between defoliation events significantly decreased the negative effect of defoliation Nitrogen availability also altered the effect of defoliation, as plants grown at highest nitrogen levels were more negatively affected by clipping than plants with no supplementary addition of nitrogen These results indicate that the magnitude of defoliation response by an individual plant differs among plant compartments and this response is modulated by other factors, such as time for recovery after defoliation, and nutrient availability In general, the effect of defoliation on individual plant production was more negative than reported effects of grazing on ecosystem primary production

280 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
08 Jan 2004-Nature
TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

7,089 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations