scispace - formally typeset
Search or ask a question
Author

Martin P. Seah

Bio: Martin P. Seah is an academic researcher from National Physical Laboratory. The author has contributed to research in topics: Sputtering & Auger electron spectroscopy. The author has an hindex of 57, co-authored 294 publications receiving 19840 citations. Previous affiliations of Martin P. Seah include University of Edinburgh & Kyoto University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a compilation of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0-10 000 eV above the Fermi level is presented.
Abstract: A compilation is presented of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0–10 000 eV above the Fermi level. For analysis, the materials are grouped under one of the headings: element, inorganic compound, organic compound and adsorbed gas, with the path lengths each time expressed in nanometers, monolayers and milligrams per square metre. The path lengths are vary high at low energies, fall to 0.1–0.8 nm for energies in the range 30–100 eV and then rise again as the energy increases further. For elements and inorganic compounds the scatter about a ‘universal curve’ is least when the path lengths are expressed in monolayers, λm. Analysis of the inter-element and inter-compound effects shows that λm is related to atom size and the most accuratae relations are λm = 538E−2+0.41(aE)1/2 for elements and λm=2170E−2+0.72(aE)1/2 for inorganic compounds, where a is the monolayer thickness (nm) and E is the electron energy above the Fermi level in eV. For organic compounds λd=49E−2+0.11E1/2 mgm−2. Published general theoretical predictions for λ, valid above 150 eV, do not show as good correlations with the experimental data as the above relations.

4,486 citations

Book
12 Oct 1992
TL;DR: In this paper, the authors used the carbon C 1s peak at 285 eV as a reference for charge correction in XPS analyses of samples prepared outside the high vacuum chamber relatively thick carbon layers are formed on the surfaces.
Abstract: Analysis of XPS spectra of Fe2 and Fe3 ions in oxide April 15th, 2019 Carbon is ubiquitous and is present on all surfaces for XPS analysis It is common practice to use the carbon C 1s peak at 285 eV as a reference for charge correction In routine XPS analyses of samples prepared outside the high vacuum chamber relatively thick carbon layers are formed on the surfaces and the corrected XPS peak positions are independent of the apparent or experimentally

3,450 citations

Journal ArticleDOI
TL;DR: In this article, the attenuation length is used to estimate the thickness of an overlayer in the presence of elastic scattering, and it is shown that using attenuation lengths eliminates most of the error due to elastic scattering without increasing the complexity of the quantification.
Abstract: We examine substrate/overlayer experiments and the equations commonly used to quantify overlayer thicknesses. Comparisons with accurate Monte-Carlo simulations show that using attenuation lengths (rather than inelastic mean free paths) eliminates most of the error due to elastic scattering without increasing the complexity of the quantification. We give attenutation lengths for 27 elements, calculated by the criterion that systematic errors in such quantifications should be minimized. These are therefore the best attenuation length values to use in layerwise quantification. We show that, provided these attenuation length values are used, the error in estimation of the thickness of an overlayer due to elastic scattering can be limited to +(5% +1 A) for an emission angle ≤58° from the surface normal, and +(10%a + 1 A) for an emission angle ≤63° from the surface normal. This accuracy is acceptable for most analytical work. Other methods (such as analytical transport theory) are much more complicated, and achieve a high precision that is often unnecessary in view of other uncertainties typically present in these experiments (such as errors due to surface morphology and diffraction effects). The results presented here, using the full theory, show that the analyst's simple straight-line approximation is in fact of adequate accuracy, provided that the correct values of attenuation length are used. Simple semi-empirical equations are presented, which allow the analyst to estimate the attenuation length for electrons of kinetic energy between 50 and 2000 eV, to a standard uncertainty of 6%.

508 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that at lower temperatures, equilibrium multilayer segregation exists, which is the analogue of the B.E.T. (Brunauer, Emmett & Teller 1938) multi-layer gas adsorption theory for free surfaces.
Abstract: Equilibrium grain boundary segregation levels have been measured on binary and ternary iron alloys with tin and sulphur over a wide temperature range, by means of two complementary techniques: interfacial energy measurements and Auger electron spectroscopy. Segregation levels derived from the Gibbs adsorption theorem applied to solid/solid interfaces are fully consistent with spectroscopy measurements. It is demonstrated that at lower temperatures, equilibrium multilayer segregation exists. The observations are treated in terms of a general theory of grain boundary adsorption, which is the analogue of the B.E.T. (Brunauer, Emmett & Teller 1938) multilayer gas adsorption theory for free surfaces, and which allows for both submonolayer and multilayer segregation at grain boundaries. Furthermore, this treatment provides a physical basis for an earlier empirical correlation between interfacial solute activity and the solid solubility limit.

362 citations

Journal ArticleDOI
TL;DR: In this article, a general framework is presented for the quantitative analysis of surfaces by X-ray photoelectron spectroscopy (XPS) or ESCA, which starts by considering analysis using reference data recorded on the same instrument and under identical conditions as the analysed sample.
Abstract: A general framework is presented for the quantitative analysis of surfaces by X-ray photoelectron spectroscopy (XPS or ESCA). The approach starts by considering analysis using reference data recorded on the same instrument and under identical conditions as the analysed sample. Matrix factors are evaluated and the quantification for adsorbed layers and sputter profiles discussed. More popularly reference data are not recorded each time but are taken from the published literature. In this case the angular anisotropy term and analyser transmission functions need to be known. These are discussed and the analyser transfer functions of commercial spectrometers are presented in detail. Nine published reference data sets are assessed to test their correlation with the theoretical predictions. Theree sets are found to give moderate agreement but agree more closely with each other in their divergence from the theory for particular elements. This divergence enables a peak intensity factor to be defined which quantifies the intensity lost from a peak due to shake-up events, etc. With this factor and the analyser transfer functions quantification can be made to an accuracy of 10% in all instruments from a single reference data set.

360 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a compilation of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0-10 000 eV above the Fermi level is presented.
Abstract: A compilation is presented of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0–10 000 eV above the Fermi level. For analysis, the materials are grouped under one of the headings: element, inorganic compound, organic compound and adsorbed gas, with the path lengths each time expressed in nanometers, monolayers and milligrams per square metre. The path lengths are vary high at low energies, fall to 0.1–0.8 nm for energies in the range 30–100 eV and then rise again as the energy increases further. For elements and inorganic compounds the scatter about a ‘universal curve’ is least when the path lengths are expressed in monolayers, λm. Analysis of the inter-element and inter-compound effects shows that λm is related to atom size and the most accuratae relations are λm = 538E−2+0.41(aE)1/2 for elements and λm=2170E−2+0.72(aE)1/2 for inorganic compounds, where a is the monolayer thickness (nm) and E is the electron energy above the Fermi level in eV. For organic compounds λd=49E−2+0.11E1/2 mgm−2. Published general theoretical predictions for λ, valid above 150 eV, do not show as good correlations with the experimental data as the above relations.

4,486 citations

Journal ArticleDOI
TL;DR: In this paper, the peak positions and peak shape parameters of Fe 3p for Fe2+ and Fe3+ were derived from the XPS spectra of the standard samples of 2FeO·SiO2 and Fe2O3, respectively.

4,434 citations

Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations

Journal ArticleDOI
TL;DR: Recent advances in the understanding and application of plasmon-induced hot carrier generation are discussed and some of the exciting new directions for the field are highlighted.
Abstract: The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

2,511 citations

Journal ArticleDOI
TL;DR: In this article, the electron inelastic mean free paths (IMFPs) of 14 organic compounds were computed for a group of 14 compounds: 26-n-paraffin, adenine, β-carotene, bovine plasma albumin, deoxyribonucleic acid, diphenylhexatriene, guanine, kapton, polyacetylene, poly(butene-1-sulfone), polyethylene, polymethylmethacrylate, polystyrene and poly(2-vinyl
Abstract: We report calculations of electron inelastic mean free paths (IMFPs) of 50–2000 eV electrons for a group of 14 organic compounds: 26-n-paraffin, adenine, β-carotene, bovine plasma albumin, deoxyribonucleic acid, diphenylhexatriene, guanine, kapton, polyacetylene, poly(butene-1-sulfone), polyethylene, polymethylmethacrylate, polystyrene and poly(2-vinylpyridine). The computed IMFPs for these compounds showed greater similarities in magnitude and in the dependences on electron energy than was found in our previous calculations for groups of elements and inorganic compounds (Papers II and III in this series). Comparison of the IMFPs for the organic compounds with values obtained from our predictive IMFP formula TPP-2 showed systematic differences of ∼40%. These differences are due to the extrapolation of TPP-2 from the regime of mainly high-density elements (from which it had been developed and tested) to the low-density materials such as the organic compounds. We analyzed the IMFP data for the groups of elements and organic compounds together and derived a modified empirical expression for one of the parameters in our predictive IMFP equation. The modified equation, denoted TPP-2M, is believed to be satisfactory for estimating IMFPs in elements, inorganic compounds and organic compounds.

2,383 citations