scispace - formally typeset
Search or ask a question
Author

Martin Paraliev

Bio: Martin Paraliev is an academic researcher from Paul Scherrer Institute. The author has contributed to research in topics: Electron gun & Cathode. The author has an hindex of 11, co-authored 48 publications receiving 566 citations.

Papers
More filters
Journal ArticleDOI
Christopher J. Milne, Thomas Schietinger, M. Aiba, Arturo Alarcon, J. Alex, Alexander Anghel, Vladimir Arsov, Carl Beard, Paul Beaud, Simona Bettoni, M. Bopp, H. Brands, Manuel Brönnimann, Ingo Brunnenkant, Marco Calvi, A. Citterio, Paolo Craievich, Marta Csatari Divall, Mark Dällenbach, Michael D’Amico, Andreas Dax, Yunpei Deng, Alexander Dietrich, Roberto Dinapoli, Edwin Divall, Sladana Dordevic, Simon Ebner, Christian Erny, Hansrudolf Fitze, Uwe Flechsig, Rolf Follath, F. Frei, Florian Gärtner, Romain Ganter, Terence Garvey, Zheqiao Geng, I. Gorgisyan, C. Gough, A. Hauff, Christoph P. Hauri, Nicole Hiller, Tadej Humar, Stephan Hunziker, Gerhard Ingold, Rasmus Ischebeck, Markus Janousch, Pavle Juranić, M. Jurcevic, Maik Kaiser, Babak Kalantari, Roger Kalt, B. Keil, Christoph Kittel, Gregor Knopp, W. Koprek, Henrik T. Lemke, Thomas Lippuner, Daniel Llorente Sancho, Florian Löhl, C. Lopez-Cuenca, Fabian Märki, F. Marcellini, G. Marinkovic, Isabelle Martiel, Ralf Menzel, Aldo Mozzanica, Karol Nass, Gian Luca Orlandi, Cigdem Ozkan Loch, Ezequiel Panepucci, Martin Paraliev, Bruce D. Patterson, Bill Pedrini, Marco Pedrozzi, Patrick Pollet, Claude Pradervand, Eduard Prat, Peter Radi, Jean-Yves Raguin, S. Redford, Jens Rehanek, Julien Réhault, Sven Reiche, Matthias Ringele, J. Rittmann, Leonid Rivkin, Albert Romann, Marie Ruat, C. Ruder, Leonardo Sala, Lionel Schebacher, T. Schilcher, Volker Schlott, Thomas J. Schmidt, Bernd Schmitt, Xintian Shi, M. Stadler, L. Stingelin, Werner Sturzenegger, Jakub Szlachetko, D. Thattil, D. Treyer, A. Trisorio, Wolfgang Tron, S. Vetter, Carlo Vicario, Didier Voulot, Meitian Wang, Thierry Zamofing, Christof Zellweger, R. Zennaro, Elke Zimoch, Rafael Abela, Luc Patthey, Hans-Heinrich Braun 
TL;DR: The SwissFEL X-ray Free Electron Laser (XFEL) facility as discussed by the authors started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard Xray branch.
Abstract: The SwissFEL X-ray Free Electron Laser (XFEL) facility started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard X-ray branch. In the following sections we will summarize the various aspects of the project, including the design of the soft and hard X-ray branches of the accelerator, the results of SwissFEL performance simulations, details of the photon beamlines and experimental stations, and our first commissioning results.

295 citations

Journal ArticleDOI
Eduard Prat1, Rafael Abela1, M. Aiba1, Arturo Alarcon1, J. Alex1, Yunieski Arbelo1, Christopher Arrell1, Vladimir Arsov1, Camila Bacellar2, Camila Bacellar1, Carl Beard1, Paul Beaud1, Simona Bettoni1, Roger Biffiger1, M. Bopp1, Hans-Heinrich Braun1, Marco Calvi1, Ariana Cassar3, Tine Celcer1, Majed Chergui2, Pavel Chevtsov1, Claudio Cirelli1, A. Citterio1, Paolo Craievich1, Marta Csatari Divall1, Andreas Dax1, Micha Dehler1, Yunpei Deng1, Alexander Dietrich1, Philipp Dijkstal1, Philipp Dijkstal4, Roberto Dinapoli1, Sladana Dordevic1, Simon Ebner1, Daniel Engeler1, Christian Erny1, Vincent Esposito5, Vincent Esposito1, Eugenio Ferrari1, Uwe Flechsig1, Rolf Follath1, F. Frei1, Romain Ganter1, Terence Garvey1, Zheqiao Geng1, Alexandre Gobbo1, C. Gough1, A. Hauff1, Christoph P. Hauri1, Nicole Hiller1, Stephan Hunziker1, Martin Huppert1, Gerhard Ingold1, Rasmus Ischebeck1, Markus Janousch1, Philip J. M. Johnson1, Steven L. Johnson1, Steven L. Johnson4, Pavle Juranić1, M. Jurcevic1, Maik Kaiser1, Roger Kalt1, B. Keil1, Daniela Kiselev1, Christoph Kittel1, Gregor Knopp1, W. Koprek1, Michael Laznovsky1, Henrik T. Lemke1, Daniel Llorente Sancho1, Florian Löhl1, Alexander Malyzhenkov1, Giulia F. Mancini2, Giulia F. Mancini1, Roman Mankowsky1, F. Marcellini1, G. Marinkovic1, Isabelle Martiel1, Fabian Märki1, Christopher J. Milne1, Aldo Mozzanica1, Karol Nass1, Gian Luca Orlandi1, Cigdem Ozkan Loch1, Martin Paraliev1, Bruce D. Patterson1, Luc Patthey1, Bill Pedrini1, Marco Pedrozzi1, Claude Pradervand1, Peter Radi1, Jean-Yves Raguin1, S. Redford1, Jens Rehanek1, Sven Reiche1, Leonid Rivkin1, Albert Romann1, Leonardo Sala1, Mathias Sander1, Thomas Schietinger1, T. Schilcher1, Volker Schlott1, Thomas J. Schmidt1, Mike Seidel1, M. Stadler1, L. Stingelin1, C. Svetina1, D. Treyer1, A. Trisorio1, Carlo Vicario1, Didier Voulot1, A. Wrulich1, Serhane Zerdane1, Elke Zimoch1 
TL;DR: In this article, the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland, were presented.
Abstract: We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-A wavelength with pulse energies of more than 500 μJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation. The first lasing results at SwissFEL, an X-ray free-electron laser, are presented, highlighting the facility’s unique capabilities. A general comparison to other major facilities is also provided.

118 citations

Journal ArticleDOI
TL;DR: Illumination of a ZrC needle with short laser pulses while high voltage pulses are applied, produces photo-field emitted electron bunches so that quantum efficiency near the apex can be much higher than for a flat photocathode due to the Schottky effect.
Abstract: Illumination of a ZrC needle with short laser pulses (16 ps, 266 nm) while high voltage pulses (-60 kV, 2 ns, 30 Hz) are applied, produces photo-field emitted electron bunches. The electric field is high and varies rapidly over the needle surface so that quantum efficiency (QE) near the apex can be much higher than for a flat photocathode due to the Schottky effect. Up to 150 pC (2.9 A peak current) have been extracted by photo-field emission from a ZrC needle. The effective emitting area has an estimated radius below 50 microm leading to a theoretical intrinsic emittance below 0.05 mm mrad.

54 citations

Journal ArticleDOI
TL;DR: An overview is given of the SwissFEL soft X-ray free-electron laser (FEL) beamline, called Athos, and its numerous operation modes, and several key hardware components, which enable these modes.
Abstract: The SwissFEL soft X-ray free-electron laser (FEL) beamline Athos will be ready for user operation in 2021. Its design includes a novel layout of alternating magnetic chicanes and short undulator segments. Together with the APPLE X architecture of undulators, the Athos branch can be operated in different modes producing FEL beams with unique characteristics ranging from attosecond pulse length to high-power modes. Further space has been reserved for upgrades including modulators and an external seeding laser for better timing control. All of these schemes rely on state-of-the-art technologies described in this overview. The optical transport line distributing the FEL beam to the experimental stations was designed with the whole range of beam parameters in mind. Currently two experimental stations, one for condensed matter and quantum materials research and a second one for atomic, molecular and optical physics, chemical sciences and ultrafast single-particle imaging, are being laid out such that they can profit from the unique soft X-ray pulses produced in the Athos branch in an optimal way.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the Schottky effect was used to explain the dependence of photo-field emitted current with the applied voltage in a single-tip ZrC with a typical apex radius around 1 μm.
Abstract: In order to find electron sources with low thermal emittance, cathodes based on single tip field emitter are investigated. Maximum peak current, measured from single tip in ZrC with a typical apex radius around 1 μm, are presented. Voltage pulses of 2 ns duration and up to 50 kV amplitude lead to field emission current up to 470 mA from one ZrC tip. Combination of high applied electric field with laser illumination gives the possibility to modulate the emission with laser pulses. Nanoseconds current pulses have been emitted with laser pulses at 1064 nm illuminating a ZrC tip under high-DC electric field. The dependence of photo-field emitted current with the applied voltage can be explained by the Schottky effect.

30 citations


Cited by
More filters
01 Sep 1994
TL;DR: In this article, the authors present a review of Charged Particle Dynamics and Focusing Systems without Space Charge, including Linear Beam Optics with Space Charge and Self-Consistent Theory of Beams.
Abstract: Review of Charged Particle Dynamics. Beam Optics and Focusing Systems Without Space Charge. Linear Beam Optics with Space Charge. Self-Consistent Theory of Beams. Emittance Variation. Beam Physics Research from 1993 to 2007. Appendices. List of Frequently Used Symbols. Bibliography. Index.

1,311 citations

Journal ArticleDOI
TL;DR: A detailed review of the technical progress that made this new level of acuity possible and a survey of the new insights gained from an atomic level perspective of structural dynamics can be found in this article.
Abstract: One of the great dream experiments in Science is to directly observe atomic motions as they occur. Femtosecond electron diffraction provided the first 'light' of sufficient intensity to achieve this goal by attaining atomic resolution to structural changes on the relevant timescales. This review covers the technical progress that made this new level of acuity possible and gives a survey of the new insights gained from an atomic level perspective of structural dynamics. Atomic level views of the simplest possible structural transition, melting, are discussed for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated with the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron?lattice systems are also discussed in which optically induced changes in the potential energy landscape lead to ballistic structural changes. Concepts such as the structural order parameters are now directly observable at the atomic level of inspection to give a remarkable view of the extraordinary degree of cooperativity involved in strongly correlated electron?lattice systems. These recent examples, in combination with time-resolved real space imaging now possible with electron probes, are truly defining an emerging field that holds great promise to make a significant impact in how we understand structural dynamics.This article is dedicated to the memory of Professor David John Hugh Cockayne, a world leader in electron microscopy, who sadly passed away in December.

479 citations

Journal ArticleDOI
07 Nov 2013-Nature
TL;DR: The results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012 eV) scale.
Abstract: Acceleration of relativistic electrons in a dielectric laser accelerator at high electric field gradients is reported, setting the stage for the development of future multi-staged accelerators of this type. Conventional particle accelerators, based on radio-frequency technology, are large-scale installations that are expensive to run. Micro-fabricated dielectric laser accelerators (DLAs) offer an attractive alternative, as they are able to support much larger accelerating fields than current accelerators, while being compact, economical and simple to manufacture using lithographic techniques. This paper presents the first experimental demonstration of a DLA capable of sustained, high-gradient (beyond 250 MeV m−1) acceleration of relativistic electrons. The results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems, which would enable compact table-top MeV–GeV-scale accelerators. Applications include security scanners and medical therapy, X-ray light sources for biological and materials research, and portable medical imaging devices. The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today’s accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently1,2,3,4, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m−1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10–30 MeV m−1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m−1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV–GeV (106–109 eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012 eV) scale.

437 citations

Journal ArticleDOI
TL;DR: A proof-of-principle experiment demonstrating dielectric laser acceleration of nonrelativistic electrons in the vicinity of a fused-silica grating and the demonstration of the inverse Smith-Purcell effect in the optical regime.
Abstract: A proof-of-principle experiment demonstrating dielectric laser acceleration of nonrelativistic electrons in the vicinity of a fused-silica grating is reported. The grating structure is utilized to generate an electromagnetic surface wave that travels synchronously with and efficiently imparts momentum on 28 keV electrons. We observe a maximum acceleration gradient of $25\text{ }\text{ }\mathrm{MeV}/\mathrm{m}$. We investigate in detail the parameter dependencies and find excellent agreement with numerical simulations. With the availability of compact and efficient fiber laser technology, these findings may pave the way towards an all-optical compact particle accelerator. This work also represents the demonstration of the inverse Smith-Purcell effect in the optical regime.

315 citations