scispace - formally typeset
Search or ask a question
Author

Martin R. Gibling

Other affiliations: Halifax
Bio: Martin R. Gibling is an academic researcher from Dalhousie University. The author has contributed to research in topics: Pennsylvanian & Fluvial. The author has an hindex of 48, co-authored 154 publications receiving 8194 citations. Previous affiliations of Martin R. Gibling include Halifax.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a model-independent framework of genetic units and bounding surfaces for sequence stratigraphy has been proposed, based on the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive), which are bounded by sequence stratigraphic surfaces.

1,255 citations

Journal ArticleDOI
TL;DR: Catuneanu et al. as discussed by the authors used a neutral approach that focused on model-independent, fundamental concepts, because these are the ones common to various approaches and this search for common ground is what they meant by "standardization", not the imposition of a strict, inflexible set of rules for the placement of sequence-stratigraphicsurfaces.

872 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a literature dataset that represents more than 1500 bedrock and Quaternary fluvial bodies for which width (W) and thickness (T) are recorded.
Abstract: The three-dimensional geometry of fluvial channel bodies and valley fills has received much less attention than their internal structure, despite the fact that many subsurface analyses draw upon the geometry of suitable fluvial analogues. Although channel-body geometry has been widely linked to base-level change and accommodation, few studies have evaluated the influence of local geomorphic controls. To remedy these deficiencies, we review the terminology for describing channel-body geometry, and present a literature dataset that represents more than 1500 bedrock and Quaternary fluvial bodies for which width (W) and thickness (T) are recorded. Twelve types of channel bodies and valley fills are distinguished based on their geomorphic setting, geometry, and internal structure, and log-log plots of W against T are presented for each type. Narrow and broad ribbons (W/T 1000, respectively) are distinguished. The dataset allows an informed selection of analogues for subsurface applications, and spreadsheets and graphs can be downloaded from a data repository. Mobile-channel belts are mainly the deposits of braided and low-sinuosity rivers, which may exceed 1 km in composite thickness and 1300 km in width. Their overwhelming dominance throughout geological time reflects their link to tectonic activity, exhumation events, and high sediment supply. Some deposits that rest on flat-lying bedrock unconformities cover areas > 70,000 km2. In contrast, meandering river bodies in the dataset are < 38 m thick and < 15 km wide, and the organized flow conditions necessary for their development may have been unusual. They do not appear to have built basin-scale deposits. Fixed channels and poorly channelized systems are divided into distributary systems (channels on megafans, deltas, and distal alluvial fans, and in crevasse systems and avulsion deposits), through-going rivers, and channels in eolian settings. Because width/maximum depth of many modern alluvial channels is between 5 and 15, these bodies probably record an initial aspect ratio followed by modest widening prior to filling or avulsion. The narrow form (W/T typically < 15) commonly reflects bank resistance and rapid filling, although some are associated with base-level rise. Exceptionally narrow bodies (W/T locally < 1) may additionally reflect unusually deep incision, compactional thickening, filling by mass-flow deposits, balanced aggradation of natural levees and channels, thawing of frozen substrates, and channel reoccupation. Valley fills rest on older bedrock or represent a brief hiatus within marine and alluvial successions. Many bedrock valley fills have W/T < 20 due to deep incision along tectonic lineaments and stacking along faults. Within marine and alluvial strata, upper Paleozoic valley fills appear larger than Mesozoic examples, possibly reflecting the influence of large glacioeustatic fluctuations in the Paleozoic. Valley fills in sub-glacial and proglacial settings are relatively narrow (W/T as low as 2.5) due to incision from catastrophic meltwater flows. The overlap in dimensions between channel bodies and valley fills, as identified by the original authors, suggests that many braided and meandering channel bodies in the rock record occupy paleovalleys. Modeling has emphasized the importance of avulsion frequency, sedimentation rate, and the ratio of channel belt and floodplain width in determining channel-body connectedness. Although these controls strongly influence mobile channel belts, they are less effective in fixed-channel systems, for which many database examples testify to the influence of local geomorphic factors that include bank strength and channel aggradation. The dataset contains few examples of highly connected suites of fixed-channel bodies, despite their abundance in many formations. Whereas accommodation is paramount for preservation, its influence is mediated through geomorphic factors, thus complicating inferences about base-level controls.

633 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of 144 Cambrian to Devonian alluvial successions documented in published literature was combined with original field data from 34 alluvian successions across Europe and North America.

270 citations


Cited by
More filters
Book ChapterDOI
31 Jan 1963

2,885 citations

Journal Article
TL;DR: In this article, a categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of the weathering rates and processes of recent mammals in the Amboseli Basin.
Abstract: Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, in- cluding those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.

2,035 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.

1,347 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline the principles for landslide mapping, and review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories.

1,290 citations

Journal ArticleDOI
TL;DR: In this paper, a model-independent framework of genetic units and bounding surfaces for sequence stratigraphy has been proposed, based on the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive), which are bounded by sequence stratigraphic surfaces.

1,255 citations