scispace - formally typeset
Search or ask a question
Author

Martin Renatus

Bio: Martin Renatus is an academic researcher from Novartis. The author has contributed to research in topics: Caspase & Plasminogen activator. The author has an hindex of 18, co-authored 51 publications receiving 5491 citations. Previous affiliations of Martin Renatus include Sanford-Burnham Institute for Medical Research & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: A unified caspase activation hypothesis is proposed whereby apical caspases are activated by dimerization of monomeric zymogens, and single amino acid substitutions at the dimer interface abrogate the activity of caspased-8 and -9 introduced into recipient mammalian cells.

1,003 citations

Journal ArticleDOI
09 Mar 2001-Cell
TL;DR: The crystal structure of the second BIR domain of XIAP (BIR2) in complex with caspase-3, at a resolution of 2.7 A, is reported, revealing the structural basis for inhibition and the mechanism of inhibition is due to a steric blockade prohibitive of substrate binding.

803 citations

Journal ArticleDOI
TL;DR: In this article, the crystal structures of a dengue NS2B-NS3pro complex and a West Nile virus NS2b-NS 3pro complex with a substrate-based inhibitor were reported.
Abstract: The replication of flaviviruses requires the correct processing of their polyprotein by the viral NS3 protease (NS3pro). Essential for the activation of NS3pro is a 47-residue region of NS2B. Here we report the crystal structures of a dengue NS2B-NS3pro complex and a West Nile virus NS2B-NS3pro complex with a substrate-based inhibitor. These structures identify key residues for NS3pro substrate recognition and clarify the mechanism of NS3pro activation.

485 citations

Journal ArticleDOI
TL;DR: Observations support a model in which recruitment by Apaf-1 creates high local concentrations of caspase 9 to provide a pathway for dimer-induced activation, with interactions at the dimer interface promoting reorientation of the activation loop.
Abstract: A critical step in the induction of apoptosis is the activation of the apoptotic initiator caspase 9. We show that at its normal physiological concentration, caspase 9 is primarily an inactive monomer (zymogen), and that activity is associated with a dimeric species. At the high concentrations used for crystal formation, caspase 9 is dimeric, and the structure reveals two very different active-site conformations within each dimer. One site closely resembles the catalytically competent sites of other caspases, whereas in the second, expulsion of the “activation loop” disrupts the catalytic machinery. We propose that the inactive domain resembles monomeric caspase 9. Activation is induced by dimerization, with interactions at the dimer interface promoting reorientation of the activation loop. These observations support a model in which recruitment by Apaf-1 creates high local concentrations of caspase 9 to provide a pathway for dimer-induced activation.

446 citations

Journal ArticleDOI
08 Nov 2001-Nature
TL;DR: The crystal structure of LF reveals a protein that has evolved through a process of gene duplication, mutation and fusion, into an enzyme with high and unusual specificity.
Abstract: Lethal factor (LF) is a protein (relative molecular mass 90,000) that is critical in the pathogenesis of anthrax1,2,3. It is a highly specific protease that cleaves members of the mitogen-activated protein kinase kinase (MAPKK) family near to their amino termini, leading to the inhibition of one or more signalling pathways4,5,6. Here we describe the crystal structure of LF and its complex with the N terminus of MAPKK-2. LF comprises four domains: domain I binds the membrane-translocating component of anthrax toxin, the protective antigen (PA); domains II, III and IV together create a long deep groove that holds the 16-residue N-terminal tail of MAPKK-2 before cleavage. Domain II resembles the ADP-ribosylating toxin from Bacillus cereus, but the active site has been mutated and recruited to augment substrate recognition. Domain III is inserted into domain II, and seems to have arisen from a repeated duplication of a structural element of domain II. Domain IV is distantly related to the zinc metalloprotease family, and contains the catalytic centre; it also resembles domain I. The structure thus reveals a protein that has evolved through a process of gene duplication, mutation and fusion, into an enzyme with high and unusual specificity.

414 citations


Cited by
More filters
Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: The basic components of the death machinery are reviewed, how they interact to regulate apoptosis in a coordinated manner is described, and the main pathways that are used to activate cell death are discussed.
Abstract: Apoptosis - the regulated destruction of a cell - is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

7,255 citations

Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.

4,741 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: The choice between life and death is one of the major events in regulation of the immune system and a major regulator of such life or death decisions is the transcription factor NF-κB as mentioned in this paper.
Abstract: The choice between life and death is one of the major events in regulation of the immune system. T cells that specifically recognize viral or bacterial antigens are selected to survive and proliferate in response to infection, whereas those that are self-reactive are eliminated via apoptosis. Even the survival of alloreactive T cells requires their proper costimulation and, when infection subsides, the activated T cells are eliminated. A major regulator of such life or death decisions is the transcription factor NF-κB. However, NF-κB cannot function alone. A variety of mechanisms exist to modulate its activity and thereby affect the ultimate outcome of a cell's fate.

2,543 citations

Journal ArticleDOI
25 Jul 2003-Cell
TL;DR: TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal fails to be activated, and the cell survives.

2,478 citations