scispace - formally typeset
Search or ask a question
Author

Martin Schlipf

Bio: Martin Schlipf is an academic researcher from Forschungszentrum Jülich. The author has contributed to research in topics: Density functional theory & Hybrid functional. The author has an hindex of 9, co-authored 13 publications receiving 5726 citations. Previous affiliations of Martin Schlipf include University of Oxford & University of California, Davis.

Papers
More filters
Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations

Journal ArticleDOI
Kurt Lejaeghere1, Gustav Bihlmayer2, Torbjörn Björkman3, Torbjörn Björkman4, Peter Blaha5, Stefan Blügel2, Volker Blum6, Damien Caliste7, Ivano E. Castelli8, Stewart J. Clark9, Andrea Dal Corso10, Stefano de Gironcoli10, Thierry Deutsch7, J. K. Dewhurst11, Igor Di Marco12, Claudia Draxl13, Claudia Draxl14, Marcin Dulak15, Olle Eriksson12, José A. Flores-Livas11, Kevin F. Garrity16, Luigi Genovese7, Paolo Giannozzi17, Matteo Giantomassi18, Stefan Goedecker19, Xavier Gonze18, Oscar Grånäs12, Oscar Grånäs20, E. K. U. Gross11, Andris Gulans13, Andris Gulans14, Francois Gygi21, D. R. Hamann22, P. J. Hasnip23, Natalie Holzwarth24, Diana Iusan12, Dominik B. Jochym25, F. Jollet, Daniel M. Jones26, Georg Kresse27, Klaus Koepernik28, Klaus Koepernik29, Emine Kucukbenli8, Emine Kucukbenli10, Yaroslav Kvashnin12, Inka L. M. Locht12, Inka L. M. Locht30, Sven Lubeck13, Martijn Marsman27, Nicola Marzari8, Ulrike Nitzsche28, Lars Nordström12, Taisuke Ozaki31, Lorenzo Paulatto32, Chris J. Pickard33, Ward Poelmans1, Matt Probert23, Keith Refson34, Keith Refson25, Manuel Richter28, Manuel Richter29, Gian-Marco Rignanese18, Santanu Saha19, Matthias Scheffler14, Matthias Scheffler35, Martin Schlipf21, Karlheinz Schwarz5, Sangeeta Sharma11, Francesca Tavazza16, Patrik Thunström5, Alexandre Tkatchenko14, Alexandre Tkatchenko36, Marc Torrent, David Vanderbilt22, Michiel van Setten18, Veronique Van Speybroeck1, John M. Wills37, Jonathan R. Yates26, Guo-Xu Zhang38, Stefaan Cottenier1 
25 Mar 2016-Science
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Abstract: The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

1,141 citations

Journal ArticleDOI
TL;DR: A quality function is introduced that assesses the agreement of a pseudopotentials calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff, and allows for a Nelder–Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction.

850 citations

Journal ArticleDOI
TL;DR: A number of tricks are presented that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k = 0.
Abstract: We present recent advances in numerical implementations of hybrid functionals and the GW approximation within the full-potential linearized augmented-plane-wave (FLAPW) method. The former is an approximation for the exchange–correlation contribution to the total energy functional in density-functional theory, and the latter is an approximation for the electronic self-energy in the framework of many-body perturbation theory. All implementations employ the mixed product basis, which has evolved into a versatile basis for the products of wave functions, describing the incoming and outgoing states of an electron that is scattered by interacting with another electron. It can thus be used for representing the nonlocal potential in hybrid functionals as well as the screened interaction and related quantities in GW calculations. In particular, the six-dimensional space integrals of the Hamiltonian exchange matrix elements (and exchange self-energy) decompose into sums over vector–matrix–vector products, which can be evaluated easily. The correlation part of the GW self-energy, which contains a time or frequency dependence, is calculated on the imaginary frequency axis with a subsequent analytic continuation to the real axis or, alternatively, by a direct frequency convolution of the Green function G and the dynamically screened Coulomb interaction W along a contour integration path that avoids the poles of the Green function. Hybrid-functional and GW calculations are notoriously computationally expensive. We present a number of tricks that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k = 0, and a nested density and density-matrix convergence scheme for hybrid-functional calculations. We show CPU timings for prototype semiconductors and illustrative results for GdN and ZnO.

86 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

3,638 citations

Journal ArticleDOI
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Abstract: Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

2,818 citations

Journal ArticleDOI
26 Jul 2018-Nature
TL;DR: A future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence is envisaged.
Abstract: Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.

2,295 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations