scispace - formally typeset
Search or ask a question
Author

Martin Stahl

Bio: Martin Stahl is an academic researcher from Hoffmann-La Roche. The author has contributed to research in topics: Virtual screening & Docking (molecular). The author has an hindex of 36, co-authored 63 publications receiving 6197 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The present review summarizes some of the most frequently employed strategies for using fluorine substituents in medicinal chemistry to improve the metabolic stability by blocking metabolically labile sites.
Abstract: Fluorinated compounds are synthesized in pharmaceutical research on a routine basis and many marketed compounds contain fluorine. The present review summarizes some of the most frequently employed strategies for using fluorine substituents in medicinal chemistry. Quite often, fluorine is introduced to improve the metabolic stability by blocking metabolically labile sites. However, fluorine can also be used to modulate the physicochemical properties, such as lipophilicity or basicity. It may exert a substantial effect on the conformation of a molecule. Increasingly, fluorine is used to enhance the binding affinity to the target protein. Recent 3D-structure determinations of protein complexes with bound fluorinated ligands have led to an improved understanding of the nonbonding protein-ligand interactions that involve fluorine.

1,271 citations

Journal ArticleDOI
TL;DR: This article compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems.
Abstract: Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their host molecules, typically proteins, given their three-dimensional structures. This optimization process requires knowledge about interaction geometries and approximate affinity contributions of attractive interactions that can be gleaned from crystal structure and associated affinity data. Here we compile and review the literature on molecular interactions as it pertains to medicinal chemistry through a combination of careful statistical analysis of the large body of publicly available X-ray structure data and experimental and theoretical studies of specific model systems. We attempt to extract key messages of practical value and complement references with our own searches of the CSDa,(1) and PDB databases.(2) The focus is on direct contacts between ligand and protein functional groups, and we restrict ourselves to those interactions that are most frequent in medicinal chemistry applications. Examples from supramolecular chemistry and quantum mechanical or molecular mechanics calculations are cited where they illustrate a specific point. The application of automated design processes is not covered nor is design of physicochemical properties of molecules such as permeability or solubility. Throughout this article, we wish to raise the readers’ awareness that formulating rules for molecular interactions is only possible within certain boundaries. The combination of 3D structure analysis with binding free energies does not yield a complete understanding of the energetic contributions of individual interactions. The reasons for this are widely known but not always fully appreciated. While it would be desirable to associate observed interactions with energy terms, we have to accept that molecular interactions behave in a highly nonadditive fashion.3,4 The same interaction may be worth different amounts of free energy in different contexts, and it is very hard to find an objective frame of reference for an interaction, since any change of a molecular structure will have multiple effects. One can easily fall victim to confirmation bias, focusing on what one has observed before and building causal relationships on too few observations. In reality, the multiplicity of interactions present in a single protein−ligand complex is a compromise of attractive and repulsive interactions that is almost impossible to deconvolute. By focusing on observed interactions, one neglects a large part of the thermodynamic cycle represented by a binding free energy: solvation processes, long-range interactions, conformational changes. Also, crystal structure coordinates give misleadingly static views of interactions. In reality a macromolecular complex is not characterized by a single structure but by an ensemble of structures. Changes in the degrees of freedom of both partners during the binding event have a large impact on binding free energy. The text is organized in the following way. The first section treats general aspects of molecular design: enthalpic and entropic components of binding free energy, flexibility, solvation, and the treatment of individual water molecules, as well as repulsive interactions. The second half of the article is devoted to specific types of interactions, beginning with hydrogen bonds, moving on to weaker polar interactions, and ending with lipophilic interactions between aliphatic and aromatic systems. We show many examples of structure−activity relationships; these are meant as helpful illustrations but individually can never confirm a rule.

1,162 citations

Journal ArticleDOI
TL;DR: A comprehensive study of the performance of fast scoring functions for library docking using the program FlexX as the docking engine shows that a well-chosen combination of two of the tested scoring functions leads to a new, robust scoring scheme with superior performance in virtual screening.
Abstract: We present a comprehensive study of the performance of fast scoring functions for library docking using the program FlexX as the docking engine Four scoring functions, among them two recently developed knowledge-based potentials, are evaluated on seven target proteins whose binding sites represent a wide range of size, form, and polarity The results of these calculations give valuable insight into strengths and weaknesses of current scoring functions Furthermore, it is shown that a well-chosen combination of two of the tested scoring functions leads to a new, robust scoring scheme with superior performance in virtual screening

497 citations

Journal ArticleDOI
TL;DR: It is found that changes in these properties depend on a subtle balance between the strength of the hydrogen bond interaction, geometry of the newly formed ring system, and the relative energies of the open and closed conformations in polar and unpolar environments.
Abstract: The formation of intramolecular hydrogen bonds has a very pronounced effect on molecular structure and properties. We study both aspects in detail with the aim of enabling a more rational use of this class of interactions in medicinal chemistry. On the basis of exhaustive searches in crystal structure databases, we derive propensities for intramolecular hydrogen bond formation of five- to eight-membered ring systems of relevance in drug discovery. A number of motifs, several of which are clearly underutilized in drug discovery, are analyzed in more detail by comparing small molecule and protein-ligand X-ray structures. To investigate effects on physicochemical properties, sets of closely related structures with and without the ability to form intramolecular hydrogen bonds were designed, synthesized, and characterized with respect to membrane permeability, water solubility, and lipophilicity. We find that changes in these properties depend on a subtle balance between the strength of the hydrogen bond interaction, geometry of the newly formed ring system, and the relative energies of the open and closed conformations in polar and unpolar environments. A number of general guidelines for medicinal chemists emerge from this study.

453 citations

Journal ArticleDOI
TL;DR: The use of MM-PBSA on a single structure is shown to be valuable as a postdocking filter in further enriching virtual screening results, as a helpful tool to prioritize de novo design solutions, and for distinguishing between good and weak binders.
Abstract: The MM-PBSA approach has become a popular method for calculating binding affinities of biomolecular complexes. Published application examples focus on small test sets and few proteins and, hence, are of limited relevance in assessing the general validity of this method. To further characterize MM-PBSA, we report on a more extensive study involving a large number of ligands and eight different proteins. Our results show that applying the MM-PBSA energy function to a single, relaxed complex structure is an adequate and sometimes more accurate approach than the standard free energy averaging over molecular dynamics snapshots. The use of MM-PBSA on a single structure is shown to be valuable (a) as a postdocking filter in further enriching virtual screening results, (b) as a helpful tool to prioritize de novo design solutions, and (c) for distinguishing between good and weak binders (DeltapIC(50) > or = 2-3), but rarely to reproduce smaller free energy differences.

401 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand to find the best docked pose using a model energy function that combines empirical and force-field-based terms.
Abstract: Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose Errors in geometry for the top-ranked pose are less than 1 A in nearly ha

6,828 citations

Journal ArticleDOI
28 Sep 2007-Science
TL;DR: Experimental progress in exploration of the specific influence of carbon-fluorine single bonds on docking interactions is reviewed and complementary analysis based on comprehensive searches in the Cambridge Structural Database and the Protein Data Bank is added.
Abstract: Fluorine substituents have become a widespread and important drug component, their introduction facilitated by the development of safe and selective fluorinating agents. Organofluorine affects nearly all physical and adsorption, distribution, metabolism, and excretion properties of a lead compound. Its inductive effects are relatively well understood, enhancing bioavailability, for example, by reducing the basicity of neighboring amines. In contrast, exploration of the specific influence of carbon-fluorine single bonds on docking interactions, whether through direct contact with the protein or through stereoelectronic effects on molecular conformation of the drug, has only recently begun. Here, we review experimental progress in this vein and add complementary analysis based on comprehensive searches in the Cambridge Structural Database and the Protein Data Bank.

4,906 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: Comparisons to results for the thymidine kinase and estrogen receptors published by Rognan and co-workers show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.
Abstract: Glide's ability to identify active compounds in a database screen is characterized by applying Glide to a diverse set of nine protein receptors. In many cases, two, or even three, protein sites are employed to probe the sensitivity of the results to the site geometry. To make the database screens as realistic as possible, the screens use sets of “druglike” decoy ligands that have been selected to be representative of what we believe is likely to be found in the compound collection of a pharmaceutical or biotechnology company. Results are presented for releases 1.8, 2.0, and 2.5 of Glide. The comparisons show that average measures for both “early” and “global” enrichment for Glide 2.5 are 3 times higher than for Glide 1.8 and more than 2 times higher than for Glide 2.0 because of better results for the least well-handled screens. This improvement in enrichment stems largely from the better balance of the more widely parametrized GlideScore 2.5 function and the inclusion of terms that penalize ligand−protei...

4,801 citations

Journal ArticleDOI
TL;DR: This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.
Abstract: It has become evident that fluorinated compounds have a remarkable record in medicinal chemistry and will play a continuing role in providing lead compounds for therapeutic applications. This tutorial review provides a sampling of renowned fluorinated drugs and their mode of action with a discussion clarifying the role and impact of fluorine substitution on drug potency.

4,664 citations